© 2008-2024 The original authors.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Preface

Spring Data LDAP makes it easier to build Spring-based applications that use the Lightweight Directory Access Protocol (LDAP).

This document is the reference guide for Spring Data - Document Support. It explains Document module concepts and semantics and the syntax for various data store namespaces.

1. Knowing Spring

Spring Data uses the Spring Framework’s core functionality, including:

While it is not important to know the Spring APIs, understanding the concepts behind them is important. At a minimum, the idea behind IoC should be familiar, no matter what IoC container you choose to use.

The core functionality of the LDAP support can be used directly, with no need to invoke the IoC services of the Spring container. This is much like JdbcTemplate, which can be used 'standalone' without any other services of the Spring container. To use all the features of Spring Data LDAP, such as the repository support, you must configure some parts of the library by using Spring.

To learn more about Spring, you can refer to the comprehensive documentation that explains the Spring Framework in detail. There are a lot of articles, blog entries, and books on Spring. See the Spring Framework home page for more information.

While it is not important to know the Spring APIs, you do need to understand the concepts behind them. At a minimum, the idea behind IoC should be familiar for whatever IoC container you choose to use.

To learn more about Spring, you can refer to the comprehensive documentation that explains the Spring Framework in detail. You can find a lot of articles, blog entries, and books on Spring. See the Spring framework home page for more information.

2. Requirements

Spring Data LDAP 2.x binaries requires JDK level 8.0 or later, Spring Framework 6.0.23 or later, and Spring LDAP 3.1.6 or later.

3. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what we think is an easy-to-follow guide for starting with the Spring Data LDAP module. However, if you encounter issues or are looking for advice, try one or more of the following resources:

Community Forum

Spring Data on Stackoverflow Stack Overflow is a tag for all of Spring Data (not just Document) users to share information and help each other. Note that registration is needed only for posting.

Professional Support

Professional, from-the-source support, with guaranteed response time, is available from Pivotal Sofware, Inc., the company behind Spring and Spring Data.

3.1. Following Development

For information on the Spring Data LDAP source code repository, nightly builds, and snapshot artifacts, see the Spring Data LDAP homepage. You can help make Spring Data best serve the needs of the Spring community by interacting with developers through the community on Stackoverflow. To follow developer activity, look for the mailing list information on the Spring Data LDAP homepage. If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data issue tracker. To stay up-to-date with the latest news and announcements in the Spring ecosystem, subscribe to the Spring Community Portal. Finally, you can follow the Spring blog or the project team on Twitter (SpringData).

3.2. Project Metadata

Please refer to Tanzu Spring Runtime for more information on commercial releases for projects that are no longer under OSS support. :leveloffset: +1

Upgrading Spring Data

Instructions for how to upgrade from earlier versions of Spring Data are provided on the project wiki. Follow the links in the release notes section to find the version that you want to upgrade to.

Upgrading instructions are always the first item in the release notes. If you are more than one release behind, please make sure that you also review the release notes of the versions that you jumped.

4. Dependencies

Due to the different inception dates of individual Spring Data modules, most of them carry different major and minor version numbers. The easiest way to find compatible ones is to rely on the Spring Data Release Train BOM that we ship with the compatible versions defined. In a Maven project, you would declare this dependency in the <dependencyManagement /> section of your POM as follows:

Example 1. Using the Spring Data release train BOM
<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>org.springframework.data</groupId>
      <artifactId>spring-data-bom</artifactId>
      <version>2023.0.13</version>
      <scope>import</scope>
      <type>pom</type>
    </dependency>
  </dependencies>
</dependencyManagement>

The current release train version is 2023.0.13. The train version uses calver with the pattern YYYY.MINOR.MICRO. The version name follows ${calver} for GA releases and service releases and the following pattern for all other versions: ${calver}-${modifier}, where modifier can be one of the following:

  • SNAPSHOT: Current snapshots

  • M1, M2, and so on: Milestones

  • RC1, RC2, and so on: Release candidates

You can find a working example of using the BOMs in our Spring Data examples repository. With that in place, you can declare the Spring Data modules you would like to use without a version in the <dependencies /> block, as follows:

Example 2. Declaring a dependency to a Spring Data module
<dependencies>
  <dependency>
    <groupId>org.springframework.data</groupId>
    <artifactId>spring-data-jpa</artifactId>
  </dependency>
<dependencies>

4.1. Dependency Management with Spring Boot

Spring Boot selects a recent version of the Spring Data modules for you. If you still want to upgrade to a newer version, set the spring-data-bom.version property to the train version and iteration you would like to use.

See Spring Boot’s documentation (search for "Spring Data Bom") for more details.

4.2. Spring Framework

The current version of Spring Data modules require Spring Framework 6.0.23 or better. The modules might also work with an older bugfix version of that minor version. However, using the most recent version within that generation is highly recommended.

5. Working with Spring Data Repositories

The goal of the Spring Data repository abstraction is to significantly reduce the amount of boilerplate code required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The information in this chapter is pulled from the Spring Data Commons module. It uses the configuration and code samples for the Jakarta Persistence API (JPA) module. If you want to use XML configuration you should adapt the XML namespace declaration and the types to be extended to the equivalents of the particular module that you use. “Namespace reference” covers XML configuration, which is supported across all Spring Data modules that support the repository API. “Repository query keywords” covers the query method keywords supported by the repository abstraction in general. For detailed information on the specific features of your module, see the chapter on that module of this document.

5.1. Core concepts

The central interface in the Spring Data repository abstraction is Repository. It takes the domain class to manage as well as the identifier type of the domain class as type arguments. This interface acts primarily as a marker interface to capture the types to work with and to help you to discover interfaces that extend this one. The CrudRepository and ListCrudRepository interfaces provide sophisticated CRUD functionality for the entity class that is being managed.

Example 3. CrudRepository Interface
public interface CrudRepository<T, ID> extends Repository<T, ID> {

  <S extends T> S save(S entity);      (1)

  Optional<T> findById(ID primaryKey); (2)

  Iterable<T> findAll();               (3)

  long count();                        (4)

  void delete(T entity);               (5)

  boolean existsById(ID primaryKey);   (6)

  // … more functionality omitted.
}
1 Saves the given entity.
2 Returns the entity identified by the given ID.
3 Returns all entities.
4 Returns the number of entities.
5 Deletes the given entity.
6 Indicates whether an entity with the given ID exists.

The methods declared in this interface are commonly referred to as CRUD methods. ListCrudRepository offers equivalent methods, but they return List where the CrudRepository methods return an Iterable.

We also provide persistence technology-specific abstractions, such as JpaRepository or MongoRepository. Those interfaces extend CrudRepository and expose the capabilities of the underlying persistence technology in addition to the rather generic persistence technology-agnostic interfaces such as CrudRepository.

Additional to the CrudRepository, there is a PagingAndSortingRepository abstraction that adds additional methods to ease paginated access to entities:

Example 4. PagingAndSortingRepository interface
public interface PagingAndSortingRepository<T, ID>  {

  Iterable<T> findAll(Sort sort);

  Page<T> findAll(Pageable pageable);
}

To access the second page of User by a page size of 20, you could do something like the following:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(PageRequest.of(1, 20));

In addition to query methods, query derivation for both count and delete queries is available. The following list shows the interface definition for a derived count query:

Example 5. Derived Count Query
interface UserRepository extends CrudRepository<User, Long> {

  long countByLastname(String lastname);
}

The following listing shows the interface definition for a derived delete query:

Example 6. Derived Delete Query
interface UserRepository extends CrudRepository<User, Long> {

  long deleteByLastname(String lastname);

  List<User> removeByLastname(String lastname);
}

5.2. Query Methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring Data, declaring those queries becomes a four-step process:

  1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain class and ID type that it should handle, as shown in the following example:

    interface PersonRepository extends Repository<Person, Long> { … }
    
  2. Declare query methods on the interface.

    interface PersonRepository extends Repository<Person, Long> {
      List<Person> findByLastname(String lastname);
    }
    
  3. Set up Spring to create proxy instances for those interfaces, either with JavaConfig or with XML configuration.

    Java
    import org.springframework.data.….repository.config.EnableLdapRepositories;
    
    @EnableLdapRepositories
    class Config { … }
    
    XML
    <?xml version="1.0" encoding="UTF-8"?>
    <beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:jpa="http://www.springframework.org/schema/data/jpa"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
         https://www.springframework.org/schema/beans/spring-beans.xsd
         http://www.springframework.org/schema/data/jpa
         https://www.springframework.org/schema/data/jpa/spring-jpa.xsd">
    
       <repositories base-package="com.acme.repositories"/>
    
    </beans>

    The JPA namespace is used in this example. If you use the repository abstraction for any other store, you need to change this to the appropriate namespace declaration of your store module. In other words, you should exchange jpa in favor of, for example, mongodb.

    Note that the JavaConfig variant does not configure a package explicitly, because the package of the annotated class is used by default. To customize the package to scan, use one of the basePackage… attributes of the data-store-specific repository’s @EnableLdapRepositories-annotation.

  4. Inject the repository instance and use it, as shown in the following example:

    class SomeClient {
    
      private final PersonRepository repository;
    
      SomeClient(PersonRepository repository) {
        this.repository = repository;
      }
    
      void doSomething() {
        List<Person> persons = repository.findByLastname("Matthews");
      }
    }
    

The sections that follow explain each step in detail:

5.3. Defining Repository Interfaces

To define a repository interface, you first need to define a domain class-specific repository interface. The interface must extend Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, you may extend CrudRepository, or one of its variants instead of Repository.

5.3.1. Fine-tuning Repository Definition

There are a few variants how you can get started with your repository interface.

The typical approach is to extend CrudRepository, which gives you methods for CRUD functionality. CRUD stands for Create, Read, Update, Delete. With version 3.0 we also introduced ListCrudRepository which is very similar to the CrudRepository but for those methods that return multiple entities it returns a List instead of an Iterable which you might find easier to use.

If you are using a reactive store you might choose ReactiveCrudRepository, or RxJava3CrudRepository depending on which reactive framework you are using.

If you are using Kotlin you might pick CoroutineCrudRepository which utilizes Kotlin’s coroutines.

Additional you can extend PagingAndSortingRepository, ReactiveSortingRepository, RxJava3SortingRepository, or CoroutineSortingRepository if you need methods that allow to specify a Sort abstraction or in the first case a Pageable abstraction. Note that the various sorting repositories no longer extended their respective CRUD repository as they did in Spring Data Versions pre 3.0. Therefore, you need to extend both interfaces if you want functionality of both.

If you do not want to extend Spring Data interfaces, you can also annotate your repository interface with @RepositoryDefinition. Extending one of the CRUD repository interfaces exposes a complete set of methods to manipulate your entities. If you prefer to be selective about the methods being exposed, copy the methods you want to expose from the CRUD repository into your domain repository. When doing so, you may change the return type of methods. Spring Data will honor the return type if possible. For example, for methods returning multiple entities you may choose Iterable<T>, List<T>, Collection<T> or a VAVR list.

If many repositories in your application should have the same set of methods you can define your own base interface to inherit from. Such an interface must be annotated with @NoRepositoryBean. This prevents Spring Data to try to create an instance of it directly and failing because it can’t determine the entity for that repository, since it still contains a generic type variable.

The following example shows how to selectively expose CRUD methods (findById and save, in this case):

Example 7. Selectively exposing CRUD methods
@NoRepositoryBean
interface MyBaseRepository<T, ID> extends Repository<T, ID> {

  Optional<T> findById(ID id);

  <S extends T> S save(S entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
  User findByEmailAddress(EmailAddress emailAddress);
}

In the prior example, you defined a common base interface for all your domain repositories and exposed findById(…) as well as save(…).These methods are routed into the base repository implementation of the store of your choice provided by Spring Data (for example, if you use JPA, the implementation is SimpleJpaRepository), because they match the method signatures in CrudRepository. So the UserRepository can now save users, find individual users by ID, and trigger a query to find Users by email address.

The intermediate repository interface is annotated with @NoRepositoryBean. Make sure you add that annotation to all repository interfaces for which Spring Data should not create instances at runtime.

5.3.2. Using Repositories with Multiple Spring Data Modules

Using a unique Spring Data module in your application makes things simple, because all repository interfaces in the defined scope are bound to the Spring Data module. Sometimes, applications require using more than one Spring Data module. In such cases, a repository definition must distinguish between persistence technologies. When it detects multiple repository factories on the class path, Spring Data enters strict repository configuration mode. Strict configuration uses details on the repository or the domain class to decide about Spring Data module binding for a repository definition:

  1. If the repository definition extends the module-specific repository, it is a valid candidate for the particular Spring Data module.

  2. If the domain class is annotated with the module-specific type annotation, it is a valid candidate for the particular Spring Data module. Spring Data modules accept either third-party annotations (such as JPA’s @Entity) or provide their own annotations (such as @Document for Spring Data MongoDB and Spring Data Elasticsearch).

The following example shows a repository that uses module-specific interfaces (JPA in this case):

Example 8. Repository definitions using module-specific interfaces
interface MyRepository extends JpaRepository<User, Long> { }

@NoRepositoryBean
interface MyBaseRepository<T, ID> extends JpaRepository<T, ID> { … }

interface UserRepository extends MyBaseRepository<User, Long> { … }

MyRepository and UserRepository extend JpaRepository in their type hierarchy. They are valid candidates for the Spring Data JPA module.

The following example shows a repository that uses generic interfaces:

Example 9. Repository definitions using generic interfaces
interface AmbiguousRepository extends Repository<User, Long> { … }

@NoRepositoryBean
interface MyBaseRepository<T, ID> extends CrudRepository<T, ID> { … }

interface AmbiguousUserRepository extends MyBaseRepository<User, Long> { … }

AmbiguousRepository and AmbiguousUserRepository extend only Repository and CrudRepository in their type hierarchy. While this is fine when using a unique Spring Data module, multiple modules cannot distinguish to which particular Spring Data these repositories should be bound.

The following example shows a repository that uses domain classes with annotations:

Example 10. Repository definitions using domain classes with annotations
interface PersonRepository extends Repository<Person, Long> { … }

@Entity
class Person { … }

interface UserRepository extends Repository<User, Long> { … }

@Document
class User { … }

PersonRepository references Person, which is annotated with the JPA @Entity annotation, so this repository clearly belongs to Spring Data JPA. UserRepository references User, which is annotated with Spring Data MongoDB’s @Document annotation.

The following bad example shows a repository that uses domain classes with mixed annotations:

Example 11. Repository definitions using domain classes with mixed annotations
interface JpaPersonRepository extends Repository<Person, Long> { … }

interface MongoDBPersonRepository extends Repository<Person, Long> { … }

@Entity
@Document
class Person { … }

This example shows a domain class using both JPA and Spring Data MongoDB annotations. It defines two repositories, JpaPersonRepository and MongoDBPersonRepository. One is intended for JPA and the other for MongoDB usage. Spring Data is no longer able to tell the repositories apart, which leads to undefined behavior.

Repository type details and distinguishing domain class annotations are used for strict repository configuration to identify repository candidates for a particular Spring Data module. Using multiple persistence technology-specific annotations on the same domain type is possible and enables reuse of domain types across multiple persistence technologies. However, Spring Data can then no longer determine a unique module with which to bind the repository.

The last way to distinguish repositories is by scoping repository base packages. Base packages define the starting points for scanning for repository interface definitions, which implies having repository definitions located in the appropriate packages. By default, annotation-driven configuration uses the package of the configuration class. The base package in XML-based configuration is mandatory.

The following example shows annotation-driven configuration of base packages:

Example 12. Annotation-driven configuration of base packages
@EnableJpaRepositories(basePackages = "com.acme.repositories.jpa")
@EnableMongoRepositories(basePackages = "com.acme.repositories.mongo")
class Configuration { … }

5.4. Defining Query Methods

The repository proxy has two ways to derive a store-specific query from the method name:

  • By deriving the query from the method name directly.

  • By using a manually defined query.

Available options depend on the actual store. However, there must be a strategy that decides what actual query is created. The next section describes the available options.

5.4.1. Query Lookup Strategies

The following strategies are available for the repository infrastructure to resolve the query. With XML configuration, you can configure the strategy at the namespace through the query-lookup-strategy attribute. For Java configuration, you can use the queryLookupStrategy attribute of the EnableLdapRepositories annotation. Some strategies may not be supported for particular datastores.

  • CREATE attempts to construct a store-specific query from the query method name. The general approach is to remove a given set of well known prefixes from the method name and parse the rest of the method. You can read more about query construction in “Query Creation”.

  • USE_DECLARED_QUERY tries to find a declared query and throws an exception if it cannot find one. The query can be defined by an annotation somewhere or declared by other means. See the documentation of the specific store to find available options for that store. If the repository infrastructure does not find a declared query for the method at bootstrap time, it fails.

  • CREATE_IF_NOT_FOUND (the default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared query first, and, if no declared query is found, it creates a custom method name-based query. This is the default lookup strategy and, thus, is used if you do not configure anything explicitly. It allows quick query definition by method names but also custom-tuning of these queries by introducing declared queries as needed.

5.4.2. Query Creation

The query builder mechanism built into the Spring Data repository infrastructure is useful for building constraining queries over entities of the repository.

The following example shows how to create a number of queries:

Example 13. Query creation from method names
interface PersonRepository extends Repository<Person, Long> {

  List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

  // Enables the distinct flag for the query
  List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);
  List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

  // Enabling ignoring case for an individual property
  List<Person> findByLastnameIgnoreCase(String lastname);
  // Enabling ignoring case for all suitable properties
  List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);

  // Enabling static ORDER BY for a query
  List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
  List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
}

Parsing query method names is divided into subject and predicate. The first part (find…By, exists…By) defines the subject of the query, the second part forms the predicate. The introducing clause (subject) can contain further expressions. Any text between find (or other introducing keywords) and By is considered to be descriptive unless using one of the result-limiting keywords such as a Distinct to set a distinct flag on the query to be created or Top/First to limit query results.

The appendix contains the full list of query method subject keywords and query method predicate keywords including sorting and letter-casing modifiers. However, the first By acts as a delimiter to indicate the start of the actual criteria predicate. At a very basic level, you can define conditions on entity properties and concatenate them with And and Or.

The actual result of parsing the method depends on the persistence store for which you create the query. However, there are some general things to notice:

  • The expressions are usually property traversals combined with operators that can be concatenated. You can combine property expressions with AND and OR. You also get support for operators such as Between, LessThan, GreaterThan, and Like for the property expressions. The supported operators can vary by datastore, so consult the appropriate part of your reference documentation.

  • The method parser supports setting an IgnoreCase flag for individual properties (for example, findByLastnameIgnoreCase(…)) or for all properties of a type that supports ignoring case (usually String instances — for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether ignoring cases is supported may vary by store, so consult the relevant sections in the reference documentation for the store-specific query method.

  • You can apply static ordering by appending an OrderBy clause to the query method that references a property and by providing a sorting direction (Asc or Desc). To create a query method that supports dynamic sorting, see “Paging, Iterating Large Results, Sorting”.

5.4.3. Property Expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding example. At query creation time, you already make sure that the parsed property is a property of the managed domain class. However, you can also define constraints by traversing nested properties. Consider the following method signature:

List<Person> findByAddressZipCode(ZipCode zipCode);

Assume a Person has an Address with a ZipCode. In that case, the method creates the x.address.zipCode property traversal. The resolution algorithm starts by interpreting the entire part (AddressZipCode) as the property and checks the domain class for a property with that name (uncapitalized). If the algorithm succeeds, it uses that property. If not, the algorithm splits up the source at the camel-case parts from the right side into a head and a tail and tries to find the corresponding property — in our example, AddressZip and Code. If the algorithm finds a property with that head, it takes the tail and continues building the tree down from there, splitting the tail up in the way just described. If the first split does not match, the algorithm moves the split point to the left (Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property. Suppose the Person class has an addressZip property as well. The algorithm would match in the first split round already, choose the wrong property, and fail (as the type of addressZip probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal points. So our method name would be as follows:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

Because we treat the underscore character as a reserved character, we strongly advise following standard Java naming conventions (that is, not using underscores in property names but using camel case instead).

5.4.4. Paging, Iterating Large Results, Sorting

To handle parameters in your query, define method parameters as already seen in the preceding examples. Besides that, the infrastructure recognizes certain specific types like Pageable and Sort, to apply pagination and sorting to your queries dynamically. The following example demonstrates these features:

Example 14. Using Pageable, Slice, and Sort in query methods
Page<User> findByLastname(String lastname, Pageable pageable);

Slice<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);
APIs taking Sort and Pageable expect non-null values to be handed into methods. If you do not want to apply any sorting or pagination, use Sort.unsorted() and Pageable.unpaged().

The first method lets you pass an org.springframework.data.domain.Pageable instance to the query method to dynamically add paging to your statically defined query. A Page knows about the total number of elements and pages available. It does so by the infrastructure triggering a count query to calculate the overall number. As this might be expensive (depending on the store used), you can instead return a Slice. A Slice knows only about whether a next Slice is available, which might be sufficient when walking through a larger result set.

Sorting options are handled through the Pageable instance, too. If you need only sorting, add an org.springframework.data.domain.Sort parameter to your method. As you can see, returning a List is also possible. In this case, the additional metadata required to build the actual Page instance is not created (which, in turn, means that the additional count query that would have been necessary is not issued). Rather, it restricts the query to look up only the given range of entities.

To find out how many pages you get for an entire query, you have to trigger an additional count query. By default, this query is derived from the query you actually trigger.
Which Method is Appropriate?

The value provided by the Spring Data abstractions is perhaps best shown by the possible query method return types outlined in the following table below. The table shows which types you can return from a query method

Table 1. Consuming Large Query Results
Method Amount of Data Fetched Query Structure Constraints

List<T>

All results.

Single query.

Query results can exhaust all memory. Fetching all data can be time-intensive.

Streamable<T>

All results.

Single query.

Query results can exhaust all memory. Fetching all data can be time-intensive.

Stream<T>

Chunked (one-by-one or in batches) depending on Stream consumption.

Single query using typically cursors.

Streams must be closed after usage to avoid resource leaks.

Flux<T>

Chunked (one-by-one or in batches) depending on Flux consumption.

Single query using typically cursors.

Store module must provide reactive infrastructure.

Slice<T>

Pageable.getPageSize() + 1 at Pageable.getOffset()

One to many queries fetching data starting at Pageable.getOffset() applying limiting.

A Slice can only navigate to the next Slice.

  • Slice provides details whether there is more data to fetch.

  • Offset-based queries becomes inefficient when the offset is too large because the database still has to materialize the full result.

  • Window provides details whether there is more data to fetch.

  • Offset-based queries becomes inefficient when the offset is too large because the database still has to materialize the full result.

Page<T>

Pageable.getPageSize() at Pageable.getOffset()

One to many queries starting at Pageable.getOffset() applying limiting. Additionally, COUNT(…) query to determine the total number of elements can be required.

Often times, COUNT(…) queries are required that are costly.

  • Offset-based queries becomes inefficient when the offset is too large because the database still has to materialize the full result.

Paging and Sorting

You can define simple sorting expressions by using property names. You can concatenate expressions to collect multiple criteria into one expression.

Example 15. Defining sort expressions
Sort sort = Sort.by("firstname").ascending()
  .and(Sort.by("lastname").descending());

For a more type-safe way to define sort expressions, start with the type for which to define the sort expression and use method references to define the properties on which to sort.

Example 16. Defining sort expressions by using the type-safe API
TypedSort<Person> person = Sort.sort(Person.class);

Sort sort = person.by(Person::getFirstname).ascending()
  .and(person.by(Person::getLastname).descending());
TypedSort.by(…) makes use of runtime proxies by (typically) using CGlib, which may interfere with native image compilation when using tools such as Graal VM Native.

If your store implementation supports Querydsl, you can also use the generated metamodel types to define sort expressions:

Example 17. Defining sort expressions by using the Querydsl API
QSort sort = QSort.by(QPerson.firstname.asc())
  .and(QSort.by(QPerson.lastname.desc()));

5.4.5. Limiting Query Results

You can limit the results of query methods by using the first or top keywords, which you can use interchangeably. You can append an optional numeric value to top or first to specify the maximum result size to be returned. If the number is left out, a result size of 1 is assumed. The following example shows how to limit the query size:

Example 18. Limiting the result size of a query with Top and First
User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);

Slice<User> findTop3ByLastname(String lastname, Pageable pageable);

List<User> findFirst10ByLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword for datastores that support distinct queries. Also, for the queries that limit the result set to one instance, wrapping the result into with the Optional keyword is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number of available pages), it is applied within the limited result.

Limiting the results in combination with dynamic sorting by using a Sort parameter lets you express query methods for the 'K' smallest as well as for the 'K' biggest elements.

5.4.6. Repository Methods Returning Collections or Iterables

Query methods that return multiple results can use standard Java Iterable, List, and Set. Beyond that, we support returning Spring Data’s Streamable, a custom extension of Iterable, as well as collection types provided by Vavr. Refer to the appendix explaining all possible query method return types.

Using Streamable as Query Method Return Type

You can use Streamable as alternative to Iterable or any collection type. It provides convenience methods to access a non-parallel Stream (missing from Iterable) and the ability to directly ….filter(…) and ….map(…) over the elements and concatenate the Streamable to others:

Example 19. Using Streamable to combine query method results
interface PersonRepository extends Repository<Person, Long> {
  Streamable<Person> findByFirstnameContaining(String firstname);
  Streamable<Person> findByLastnameContaining(String lastname);
}

Streamable<Person> result = repository.findByFirstnameContaining("av")
  .and(repository.findByLastnameContaining("ea"));
Returning Custom Streamable Wrapper Types

Providing dedicated wrapper types for collections is a commonly used pattern to provide an API for a query result that returns multiple elements. Usually, these types are used by invoking a repository method returning a collection-like type and creating an instance of the wrapper type manually. You can avoid that additional step as Spring Data lets you use these wrapper types as query method return types if they meet the following criteria:

  1. The type implements Streamable.

  2. The type exposes either a constructor or a static factory method named of(…) or valueOf(…) that takes Streamable as an argument.

The following listing shows an example:

class Product {                                         (1)
  MonetaryAmount getPrice() { … }
}

@RequiredArgsConstructor(staticName = "of")
class Products implements Streamable<Product> {         (2)

  private final Streamable<Product> streamable;

  public MonetaryAmount getTotal() {                    (3)
    return streamable.stream()
      .map(Priced::getPrice)
      .reduce(Money.of(0), MonetaryAmount::add);
  }


  @Override
  public Iterator<Product> iterator() {                 (4)
    return streamable.iterator();
  }
}

interface ProductRepository implements Repository<Product, Long> {
  Products findAllByDescriptionContaining(String text); (5)
}
1 A Product entity that exposes API to access the product’s price.
2 A wrapper type for a Streamable<Product> that can be constructed by using Products.of(…) (factory method created with the Lombok annotation). A standard constructor taking the Streamable<Product> will do as well.
3 The wrapper type exposes an additional API, calculating new values on the Streamable<Product>.
4 Implement the Streamable interface and delegate to the actual result.
5 That wrapper type Products can be used directly as a query method return type. You do not need to return Streamable<Product> and manually wrap it after the query in the repository client.
Support for Vavr Collections

Vavr is a library that embraces functional programming concepts in Java. It ships with a custom set of collection types that you can use as query method return types, as the following table shows:

Vavr collection type Used Vavr implementation type Valid Java source types

io.vavr.collection.Seq

io.vavr.collection.List

java.util.Iterable

io.vavr.collection.Set

io.vavr.collection.LinkedHashSet

java.util.Iterable

io.vavr.collection.Map

io.vavr.collection.LinkedHashMap

java.util.Map

You can use the types in the first column (or subtypes thereof) as query method return types and get the types in the second column used as implementation type, depending on the Java type of the actual query result (third column). Alternatively, you can declare Traversable (the Vavr Iterable equivalent), and we then derive the implementation class from the actual return value. That is, a java.util.List is turned into a Vavr List or Seq, a java.util.Set becomes a Vavr LinkedHashSet Set, and so on.

5.4.7. Streaming Query Results

You can process the results of query methods incrementally by using a Java 8 Stream<T> as the return type. Instead of wrapping the query results in a Stream, data store-specific methods are used to perform the streaming, as shown in the following example:

Example 20. Stream the result of a query with Java 8 Stream<T>
@Query("select u from User u")
Stream<User> findAllByCustomQueryAndStream();

Stream<User> readAllByFirstnameNotNull();

@Query("select u from User u")
Stream<User> streamAllPaged(Pageable pageable);
A Stream potentially wraps underlying data store-specific resources and must, therefore, be closed after usage. You can either manually close the Stream by using the close() method or by using a Java 7 try-with-resources block, as shown in the following example:
Example 21. Working with a Stream<T> result in a try-with-resources block
try (Stream<User> stream = repository.findAllByCustomQueryAndStream()) {
  stream.forEach(…);
}
Not all Spring Data modules currently support Stream<T> as a return type.

5.4.8. Null Handling of Repository Methods

As of Spring Data 2.0, repository CRUD methods that return an individual aggregate instance use Java 8’s Optional to indicate the potential absence of a value. Besides that, Spring Data supports returning the following wrapper types on query methods:

  • com.google.common.base.Optional

  • scala.Option

  • io.vavr.control.Option

Alternatively, query methods can choose not to use a wrapper type at all. The absence of a query result is then indicated by returning null. Repository methods returning collections, collection alternatives, wrappers, and streams are guaranteed never to return null but rather the corresponding empty representation. See “Repository query return types” for details.

Nullability Annotations

You can express nullability constraints for repository methods by using Spring Framework’s nullability annotations. They provide a tooling-friendly approach and opt-in null checks during runtime, as follows:

  • @NonNullApi: Used on the package level to declare that the default behavior for parameters and return values is, respectively, neither to accept nor to produce null values.

  • @NonNull: Used on a parameter or return value that must not be null (not needed on a parameter and return value where @NonNullApi applies).

  • @Nullable: Used on a parameter or return value that can be null.

Spring annotations are meta-annotated with JSR 305 annotations (a dormant but widely used JSR). JSR 305 meta-annotations let tooling vendors (such as IDEA, Eclipse, and Kotlin) provide null-safety support in a generic way, without having to hard-code support for Spring annotations. To enable runtime checking of nullability constraints for query methods, you need to activate non-nullability on the package level by using Spring’s @NonNullApi in package-info.java, as shown in the following example:

Example 22. Declaring Non-nullability in package-info.java
@org.springframework.lang.NonNullApi
package com.acme;

Once non-null defaulting is in place, repository query method invocations get validated at runtime for nullability constraints. If a query result violates the defined constraint, an exception is thrown. This happens when the method would return null but is declared as non-nullable (the default with the annotation defined on the package in which the repository resides). If you want to opt-in to nullable results again, selectively use @Nullable on individual methods. Using the result wrapper types mentioned at the start of this section continues to work as expected: an empty result is translated into the value that represents absence.

The following example shows a number of the techniques just described:

Example 23. Using different nullability constraints
package com.acme;                                                       (1)

import org.springframework.lang.Nullable;

interface UserRepository extends Repository<User, Long> {

  User getByEmailAddress(EmailAddress emailAddress);                    (2)

  @Nullable
  User findByEmailAddress(@Nullable EmailAddress emailAdress);          (3)

  Optional<User> findOptionalByEmailAddress(EmailAddress emailAddress); (4)
}
1 The repository resides in a package (or sub-package) for which we have defined non-null behavior.
2 Throws an EmptyResultDataAccessException when the query does not produce a result. Throws an IllegalArgumentException when the emailAddress handed to the method is null.
3 Returns null when the query does not produce a result. Also accepts null as the value for emailAddress.
4 Returns Optional.empty() when the query does not produce a result. Throws an IllegalArgumentException when the emailAddress handed to the method is null.
Nullability in Kotlin-based Repositories

Kotlin has the definition of nullability constraints baked into the language. Kotlin code compiles to bytecode, which does not express nullability constraints through method signatures but rather through compiled-in metadata. Make sure to include the kotlin-reflect JAR in your project to enable introspection of Kotlin’s nullability constraints. Spring Data repositories use the language mechanism to define those constraints to apply the same runtime checks, as follows:

Example 24. Using nullability constraints on Kotlin repositories
interface UserRepository : Repository<User, String> {

  fun findByUsername(username: String): User     (1)

  fun findByFirstname(firstname: String?): User? (2)
}
1 The method defines both the parameter and the result as non-nullable (the Kotlin default). The Kotlin compiler rejects method invocations that pass null to the method. If the query yields an empty result, an EmptyResultDataAccessException is thrown.
2 This method accepts null for the firstname parameter and returns null if the query does not produce a result.

5.4.9. Asynchronous Query Results

You can run repository queries asynchronously by using Spring’s asynchronous method running capability. This means the method returns immediately upon invocation while the actual query occurs in a task that has been submitted to a Spring TaskExecutor. Asynchronous queries differ from reactive queries and should not be mixed. See the store-specific documentation for more details on reactive support. The following example shows a number of asynchronous queries:

@Async
Future<User> findByFirstname(String firstname);               (1)

@Async
CompletableFuture<User> findOneByFirstname(String firstname); (2)
1 Use java.util.concurrent.Future as the return type.
2 Use a Java 8 java.util.concurrent.CompletableFuture as the return type.

5.5. Creating Repository Instances

This section covers how to create instances and bean definitions for the defined repository interfaces.

5.5.1. Java Configuration

Use the store-specific @EnableLdapRepositories annotation on a Java configuration class to define a configuration for repository activation. For an introduction to Java-based configuration of the Spring container, see JavaConfig in the Spring reference documentation.

A sample configuration to enable Spring Data repositories resembles the following:

Example 25. Sample annotation-based repository configuration
@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

  @Bean
  EntityManagerFactory entityManagerFactory() {
    // …
  }
}
The preceding example uses the JPA-specific annotation, which you would change according to the store module you actually use. The same applies to the definition of the EntityManagerFactory bean. See the sections covering the store-specific configuration.

5.5.2. XML Configuration

Each Spring Data module includes a repositories element that lets you define a base package that Spring scans for you, as shown in the following example:

Example 26. Enabling Spring Data repositories via XML
<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns="http://www.springframework.org/schema/data/jpa"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    https://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/data/jpa
    https://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

  <jpa:repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-packages for interfaces extending Repository or one of its sub-interfaces. For each interface found, the infrastructure registers the persistence technology-specific FactoryBean to create the appropriate proxies that handle invocations of the query methods. Each bean is registered under a bean name that is derived from the interface name, so an interface of UserRepository would be registered under userRepository. Bean names for nested repository interfaces are prefixed with their enclosing type name. The base package attribute allows wildcards so that you can define a pattern of scanned packages.

5.5.3. Using Filters

By default, the infrastructure picks up every interface that extends the persistence technology-specific Repository sub-interface located under the configured base package and creates a bean instance for it. However, you might want more fine-grained control over which interfaces have bean instances created for them. To do so, use filter elements inside the repository declaration. The semantics are exactly equivalent to the elements in Spring’s component filters. For details, see the Spring reference documentation for these elements.

For example, to exclude certain interfaces from instantiation as repository beans, you could use the following configuration:

Example 27. Using filters
Java
@Configuration
@EnableLdapRepositories(basePackages = "com.acme.repositories",
    includeFilters = { @Filter(type = FilterType.REGEX, pattern = ".*SomeRepository") },
    excludeFilters = { @Filter(type = FilterType.REGEX, pattern = ".*SomeOtherRepository") })
class ApplicationConfiguration {

  @Bean
  EntityManagerFactory entityManagerFactory() {
    // …
  }
}
XML
<repositories base-package="com.acme.repositories">
  <context:include-filter type="regex" expression=".*SomeRepository" />
  <context:exclude-filter type="regex" expression=".*SomeOtherRepository" />
</repositories>

The preceding example includes all interfaces ending with SomeRepository and excludes those ending with SomeOtherRepository from being instantiated.

5.5.4. Standalone Usage

You can also use the repository infrastructure outside of a Spring container — for example, in CDI environments.You still need some Spring libraries in your classpath, but, generally, you can set up repositories programmatically as well.The Spring Data modules that provide repository support ship with a persistence technology-specific RepositoryFactory that you can use, as follows:

Example 28. Standalone usage of the repository factory
RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

5.6. Custom Implementations for Spring Data Repositories

Spring Data provides various options to create query methods with little coding. But when those options don’t fit your needs you can also provide your own custom implementation for repository methods. This section describes how to do that.

5.6.1. Customizing Individual Repositories

To enrich a repository with custom functionality, you must first define a fragment interface and an implementation for the custom functionality, as follows:

Example 29. Interface for custom repository functionality
interface CustomizedUserRepository {
  void someCustomMethod(User user);
}
Example 30. Implementation of custom repository functionality
class CustomizedUserRepositoryImpl implements CustomizedUserRepository {

  public void someCustomMethod(User user) {
    // Your custom implementation
  }
}
The most important part of the class name that corresponds to the fragment interface is the Impl postfix.

The implementation itself does not depend on Spring Data and can be a regular Spring bean. Consequently, you can use standard dependency injection behavior to inject references to other beans (such as a JdbcTemplate), take part in aspects, and so on.

Then you can let your repository interface extend the fragment interface, as follows:

Example 31. Changes to your repository interface
interface UserRepository extends CrudRepository<User, Long>, CustomizedUserRepository {

  // Declare query methods here
}

Extending the fragment interface with your repository interface combines the CRUD and custom functionality and makes it available to clients.

Spring Data repositories are implemented by using fragments that form a repository composition. Fragments are the base repository, functional aspects (such as QueryDsl), and custom interfaces along with their implementations. Each time you add an interface to your repository interface, you enhance the composition by adding a fragment. The base repository and repository aspect implementations are provided by each Spring Data module.

The following example shows custom interfaces and their implementations:

Example 32. Fragments with their implementations
interface HumanRepository {
  void someHumanMethod(User user);
}

class HumanRepositoryImpl implements HumanRepository {

  public void someHumanMethod(User user) {
    // Your custom implementation
  }
}

interface ContactRepository {

  void someContactMethod(User user);

  User anotherContactMethod(User user);
}

class ContactRepositoryImpl implements ContactRepository {

  public void someContactMethod(User user) {
    // Your custom implementation
  }

  public User anotherContactMethod(User user) {
    // Your custom implementation
  }
}

The following example shows the interface for a custom repository that extends CrudRepository:

Example 33. Changes to your repository interface
interface UserRepository extends CrudRepository<User, Long>, HumanRepository, ContactRepository {

  // Declare query methods here
}

Repositories may be composed of multiple custom implementations that are imported in the order of their declaration. Custom implementations have a higher priority than the base implementation and repository aspects. This ordering lets you override base repository and aspect methods and resolves ambiguity if two fragments contribute the same method signature. Repository fragments are not limited to use in a single repository interface. Multiple repositories may use a fragment interface, letting you reuse customizations across different repositories.

The following example shows a repository fragment and its implementation:

Example 34. Fragments overriding save(…)
interface CustomizedSave<T> {
  <S extends T> S save(S entity);
}

class CustomizedSaveImpl<T> implements CustomizedSave<T> {

  public <S extends T> S save(S entity) {
    // Your custom implementation
  }
}

The following example shows a repository that uses the preceding repository fragment:

Example 35. Customized repository interfaces
interface UserRepository extends CrudRepository<User, Long>, CustomizedSave<User> {
}

interface PersonRepository extends CrudRepository<Person, Long>, CustomizedSave<Person> {
}
Configuration

The repository infrastructure tries to autodetect custom implementation fragments by scanning for classes below the package in which it found a repository. These classes need to follow the naming convention of appending a postfix defaulting to Impl.

The following example shows a repository that uses the default postfix and a repository that sets a custom value for the postfix:

Example 36. Configuration example
Java
@EnableLdapRepositories(repositoryImplementationPostfix = "MyPostfix")
class Configuration { … }
XML
<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="MyPostfix" />

The first configuration in the preceding example tries to look up a class called com.acme.repository.CustomizedUserRepositoryImpl to act as a custom repository implementation. The second example tries to look up com.acme.repository.CustomizedUserRepositoryMyPostfix.

Resolution of Ambiguity

If multiple implementations with matching class names are found in different packages, Spring Data uses the bean names to identify which one to use.

Given the following two custom implementations for the CustomizedUserRepository shown earlier, the first implementation is used. Its bean name is customizedUserRepositoryImpl, which matches that of the fragment interface (CustomizedUserRepository) plus the postfix Impl.

Example 37. Resolution of ambiguous implementations
package com.acme.impl.one;

class CustomizedUserRepositoryImpl implements CustomizedUserRepository {

  // Your custom implementation
}
package com.acme.impl.two;

@Component("specialCustomImpl")
class CustomizedUserRepositoryImpl implements CustomizedUserRepository {

  // Your custom implementation
}

If you annotate the UserRepository interface with @Component("specialCustom"), the bean name plus Impl then matches the one defined for the repository implementation in com.acme.impl.two, and it is used instead of the first one.

Manual Wiring

If your custom implementation uses annotation-based configuration and autowiring only, the preceding approach shown works well, because it is treated as any other Spring bean. If your implementation fragment bean needs special wiring, you can declare the bean and name it according to the conventions described in the preceding section. The infrastructure then refers to the manually defined bean definition by name instead of creating one itself. The following example shows how to manually wire a custom implementation:

Example 38. Manual wiring of custom implementations
Java
class MyClass {
  MyClass(@Qualifier("userRepositoryImpl") UserRepository userRepository) {
    …
  }
}
XML
<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
  <!-- further configuration -->
</beans:bean>

5.6.2. Customize the Base Repository

The approach described in the preceding section requires customization of each repository interfaces when you want to customize the base repository behavior so that all repositories are affected. To instead change behavior for all repositories, you can create an implementation that extends the persistence technology-specific repository base class. This class then acts as a custom base class for the repository proxies, as shown in the following example:

Example 39. Custom repository base class
class MyRepositoryImpl<T, ID>
  extends SimpleJpaRepository<T, ID> {

  private final EntityManager entityManager;

  MyRepositoryImpl(JpaEntityInformation entityInformation,
                          EntityManager entityManager) {
    super(entityInformation, entityManager);

    // Keep the EntityManager around to used from the newly introduced methods.
    this.entityManager = entityManager;
  }

  @Transactional
  public <S extends T> S save(S entity) {
    // implementation goes here
  }
}
The class needs to have a constructor of the super class which the store-specific repository factory implementation uses. If the repository base class has multiple constructors, override the one taking an EntityInformation plus a store specific infrastructure object (such as an EntityManager or a template class).

The final step is to make the Spring Data infrastructure aware of the customized repository base class. In configuration, you can do so by using the repositoryBaseClass, as shown in the following example:

Example 40. Configuring a custom repository base class
Java
@Configuration
@EnableLdapRepositories(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { … }
XML
<repositories base-package="com.acme.repository"
     base-class="….MyRepositoryImpl" />

5.7. Publishing Events from Aggregate Roots

Entities managed by repositories are aggregate roots. In a Domain-Driven Design application, these aggregate roots usually publish domain events. Spring Data provides an annotation called @DomainEvents that you can use on a method of your aggregate root to make that publication as easy as possible, as shown in the following example:

Example 41. Exposing domain events from an aggregate root
class AnAggregateRoot {

    @DomainEvents (1)
    Collection<Object> domainEvents() {
        // … return events you want to get published here
    }

    @AfterDomainEventPublication (2)
    void callbackMethod() {
       // … potentially clean up domain events list
    }
}
1 The method that uses @DomainEvents can return either a single event instance or a collection of events. It must not take any arguments.
2 After all events have been published, we have a method annotated with @AfterDomainEventPublication. You can use it to potentially clean the list of events to be published (among other uses).

The methods are called every time one of the following a Spring Data repository methods are called:

  • save(…), saveAll(…)

  • delete(…), deleteAll(…), deleteAllInBatch(…), deleteInBatch(…)

Note, that these methods take the aggregate root instances as arguments. This is why deleteById(…) is notably absent, as the implementations might choose to issue a query deleting the instance and thus we would never have access to the aggregate instance in the first place.

5.8. Spring Data Extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts. Currently, most of the integration is targeted towards Spring MVC.

5.8.1. Querydsl Extension

Querydsl is a framework that enables the construction of statically typed SQL-like queries through its fluent API.

Several Spring Data modules offer integration with Querydsl through QuerydslPredicateExecutor, as the following example shows:

Example 42. QuerydslPredicateExecutor interface
public interface QuerydslPredicateExecutor<T> {

  Optional<T> findById(Predicate predicate);  (1)

  Iterable<T> findAll(Predicate predicate);   (2)

  long count(Predicate predicate);            (3)

  boolean exists(Predicate predicate);        (4)

  // … more functionality omitted.
}
1 Finds and returns a single entity matching the Predicate.
2 Finds and returns all entities matching the Predicate.
3 Returns the number of entities matching the Predicate.
4 Returns whether an entity that matches the Predicate exists.

To use the Querydsl support, extend QuerydslPredicateExecutor on your repository interface, as the following example shows:

Example 43. Querydsl integration on repositories
interface UserRepository extends CrudRepository<User, Long>, QuerydslPredicateExecutor<User> {
}

The preceding example lets you write type-safe queries by using Querydsl Predicate instances, as the following example shows:

Predicate predicate = user.firstname.equalsIgnoreCase("dave")
	.and(user.lastname.startsWithIgnoreCase("mathews"));

userRepository.findAll(predicate);

5.8.2. Web support

Spring Data modules that support the repository programming model ship with a variety of web support. The web related components require Spring MVC JARs to be on the classpath. Some of them even provide integration with Spring HATEOAS. In general, the integration support is enabled by using the @EnableSpringDataWebSupport annotation in your JavaConfig configuration class, as the following example shows:

Example 44. Enabling Spring Data web support
Java
@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration {}
XML
<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you use Spring HATEOAS, register this one *instead* of the former -->
<bean class="org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

The @EnableSpringDataWebSupport annotation registers a few components. We discuss those later in this section. It also detects Spring HATEOAS on the classpath and registers integration components (if present) for it as well.

Basic Web Support
Enabling Spring Data web support in XML

The configuration shown in the previous section registers a few basic components:

  • A Using the DomainClassConverter Class to let Spring MVC resolve instances of repository-managed domain classes from request parameters or path variables.

  • HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort instances from request parameters.

  • Jackson Modules to de-/serialize types like Point and Distance, or store specific ones, depending on the Spring Data Module used.

Using the DomainClassConverter Class

The DomainClassConverter class lets you use domain types in your Spring MVC controller method signatures directly so that you need not manually lookup the instances through the repository, as the following example shows:

Example 45. A Spring MVC controller using domain types in method signatures
@Controller
@RequestMapping("/users")
class UserController {

  @RequestMapping("/{id}")
  String showUserForm(@PathVariable("id") User user, Model model) {

    model.addAttribute("user", user);
    return "userForm";
  }
}

The method receives a User instance directly, and no further lookup is necessary. The instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain class first and eventually access the instance through calling findById(…) on the repository instance registered for the domain type.

Currently, the repository has to implement CrudRepository to be eligible to be discovered for conversion.
HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet shown in the previous section also registers a PageableHandlerMethodArgumentResolver as well as an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort as valid controller method arguments, as the following example shows:

Example 46. Using Pageable as a controller method argument
@Controller
@RequestMapping("/users")
class UserController {

  private final UserRepository repository;

  UserController(UserRepository repository) {
    this.repository = repository;
  }

  @RequestMapping
  String showUsers(Model model, Pageable pageable) {

    model.addAttribute("users", repository.findAll(pageable));
    return "users";
  }
}

The preceding method signature causes Spring MVC try to derive a Pageable instance from the request parameters by using the following default configuration:

Table 2. Request parameters evaluated for Pageable instances

page

Page you want to retrieve. 0-indexed and defaults to 0.

size

Size of the page you want to retrieve. Defaults to 20.

sort

Properties that should be sorted by in the format property,property(,ASC|DESC)(,IgnoreCase). The default sort direction is case-sensitive ascending. Use multiple sort parameters if you want to switch direction or case sensitivity — for example, ?sort=firstname&sort=lastname,asc&sort=city,ignorecase.

To customize this behavior, register a bean that implements the PageableHandlerMethodArgumentResolverCustomizer interface or the SortHandlerMethodArgumentResolverCustomizer interface, respectively. Its customize() method gets called, letting you change settings, as the following example shows:

@Bean SortHandlerMethodArgumentResolverCustomizer sortCustomizer() {
    return s -> s.setPropertyDelimiter("<-->");
}

If setting the properties of an existing MethodArgumentResolver is not sufficient for your purpose, extend either SpringDataWebConfiguration or the HATEOAS-enabled equivalent, override the pageableResolver() or sortResolver() methods, and import your customized configuration file instead of using the @Enable annotation.

If you need multiple Pageable or Sort instances to be resolved from the request (for multiple tables, for example), you can use Spring’s @Qualifier annotation to distinguish one from another. The request parameters then have to be prefixed with ${qualifier}_. The following example shows the resulting method signature:

String showUsers(Model model,
      @Qualifier("thing1") Pageable first,
      @Qualifier("thing2") Pageable second) { … }

You have to populate thing1_page, thing2_page, and so on.

The default Pageable passed into the method is equivalent to a PageRequest.of(0, 20), but you can customize it by using the @PageableDefault annotation on the Pageable parameter.

Hypermedia Support for Page and Slice

Spring HATEOAS ships with a representation model class (PagedModel/SlicedModel) that allows enriching the content of a Page or Slice instance with the necessary Page/Slice metadata as well as links to let the clients easily navigate the pages. The conversion of a Page to a PagedModel is done by an implementation of the Spring HATEOAS RepresentationModelAssembler interface, called the PagedResourcesAssembler. Similarly Slice instances can be converted to a SlicedModel using a SlicedResourcesAssembler. The following example shows how to use a PagedResourcesAssembler as a controller method argument, as the SlicedResourcesAssembler works exactly the same:

Example 47. Using a PagedResourcesAssembler as controller method argument
@Controller
class PersonController {

  private final PersonRepository repository;

  // Constructor omitted

  @GetMapping("/people")
  HttpEntity<PagedModel<Person>> people(Pageable pageable,
    PagedResourcesAssembler assembler) {

    Page<Person> people = repository.findAll(pageable);
    return ResponseEntity.ok(assembler.toModel(people));
  }
}

Enabling the configuration, as shown in the preceding example, lets the PagedResourcesAssembler be used as a controller method argument. Calling toModel(…) on it has the following effects:

  • The content of the Page becomes the content of the PagedModel instance.

  • The PagedModel object gets a PageMetadata instance attached, and it is populated with information from the Page and the underlying Pageable.

  • The PagedModel may get prev and next links attached, depending on the page’s state. The links point to the URI to which the method maps. The pagination parameters added to the method match the setup of the PageableHandlerMethodArgumentResolver to make sure the links can be resolved later.

Assume we have 30 Person instances in the database. You can now trigger a request (GET http://localhost:8080/people) and see output similar to the following:

{ "links" : [
    { "rel" : "next", "href" : "http://localhost:8080/persons?page=1&size=20" }
  ],
  "content" : [
     … // 20 Person instances rendered here
  ],
  "pageMetadata" : {
    "size" : 20,
    "totalElements" : 30,
    "totalPages" : 2,
    "number" : 0
  }
}
The JSON envelope format shown here doesn’t follow any formally specified structure and it’s not guaranteed stable and we might change it at any time. It’s highly recommended to enable the rendering as a hypermedia-enabled, official media type, supported by Spring HATEOAS, like HAL. Those can be activated by using its @EnableHypermediaSupport annotation. Find more information in the Spring HATEOAS reference documentation.

The assembler produced the correct URI and also picked up the default configuration to resolve the parameters into a Pageable for an upcoming request. This means that, if you change that configuration, the links automatically adhere to the change. By default, the assembler points to the controller method it was invoked in, but you can customize that by passing a custom Link to be used as base to build the pagination links, which overloads the PagedResourcesAssembler.toModel(…) method.

Spring Data Jackson Modules

The core module, and some of the store specific ones, ship with a set of Jackson Modules for types, like org.springframework.data.geo.Distance and org.springframework.data.geo.Point, used by the Spring Data domain.
Those Modules are imported once web support is enabled and com.fasterxml.jackson.databind.ObjectMapper is available.

During initialization SpringDataJacksonModules, like the SpringDataJacksonConfiguration, get picked up by the infrastructure, so that the declared com.fasterxml.jackson.databind.Modules are made available to the Jackson ObjectMapper.

Data binding mixins for the following domain types are registered by the common infrastructure.

org.springframework.data.geo.Distance
org.springframework.data.geo.Point
org.springframework.data.geo.Box
org.springframework.data.geo.Circle
org.springframework.data.geo.Polygon

The individual module may provide additional SpringDataJacksonModules.
Please refer to the store specific section for more details.

Web Databinding Support

You can use Spring Data projections (described in Projections) to bind incoming request payloads by using either JSONPath expressions (requires Jayway JsonPath) or XPath expressions (requires XmlBeam), as the following example shows:

Example 48. HTTP payload binding using JSONPath or XPath expressions
@ProjectedPayload
public interface UserPayload {

  @XBRead("//firstname")
  @JsonPath("$..firstname")
  String getFirstname();

  @XBRead("/lastname")
  @JsonPath({ "$.lastname", "$.user.lastname" })
  String getLastname();
}

You can use the type shown in the preceding example as a Spring MVC handler method argument or by using ParameterizedTypeReference on one of methods of the RestTemplate. The preceding method declarations would try to find firstname anywhere in the given document. The lastname XML lookup is performed on the top-level of the incoming document. The JSON variant of that tries a top-level lastname first but also tries lastname nested in a user sub-document if the former does not return a value. That way, changes in the structure of the source document can be mitigated easily without having clients calling the exposed methods (usually a drawback of class-based payload binding).

Nested projections are supported as described in Projections. If the method returns a complex, non-interface type, a Jackson ObjectMapper is used to map the final value.

For Spring MVC, the necessary converters are registered automatically as soon as @EnableSpringDataWebSupport is active and the required dependencies are available on the classpath. For usage with RestTemplate, register a ProjectingJackson2HttpMessageConverter (JSON) or XmlBeamHttpMessageConverter manually.

For more information, see the web projection example in the canonical Spring Data Examples repository.

Querydsl Web Support

For those stores that have QueryDSL integration, you can derive queries from the attributes contained in a Request query string.

Consider the following query string:

?firstname=Dave&lastname=Matthews

Given the User object from the previous examples, you can resolve a query string to the following value by using the QuerydslPredicateArgumentResolver, as follows:

QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))
The feature is automatically enabled, along with @EnableSpringDataWebSupport, when Querydsl is found on the classpath.

Adding a @QuerydslPredicate to the method signature provides a ready-to-use Predicate, which you can run by using the QuerydslPredicateExecutor.

Type information is typically resolved from the method’s return type. Since that information does not necessarily match the domain type, it might be a good idea to use the root attribute of QuerydslPredicate.

The following example shows how to use @QuerydslPredicate in a method signature:

@Controller
class UserController {

  @Autowired UserRepository repository;

  @RequestMapping(value = "/", method = RequestMethod.GET)
  String index(Model model, @QuerydslPredicate(root = User.class) Predicate predicate,    (1)
          Pageable pageable, @RequestParam MultiValueMap<String, String> parameters) {

    model.addAttribute("users", repository.findAll(predicate, pageable));

    return "index";
  }
}
1 Resolve query string arguments to matching Predicate for User.

The default binding is as follows:

  • Object on simple properties as eq.

  • Object on collection like properties as contains.

  • Collection on simple properties as in.

You can customize those bindings through the bindings attribute of @QuerydslPredicate or by making use of Java 8 default methods and adding the QuerydslBinderCustomizer method to the repository interface, as follows:

interface UserRepository extends CrudRepository<User, String>,
                                 QuerydslPredicateExecutor<User>,                (1)
                                 QuerydslBinderCustomizer<QUser> {               (2)

  @Override
  default void customize(QuerydslBindings bindings, QUser user) {

    bindings.bind(user.username).first((path, value) -> path.contains(value))    (3)
    bindings.bind(String.class)
      .first((StringPath path, String value) -> path.containsIgnoreCase(value)); (4)
    bindings.excluding(user.password);                                           (5)
  }
}
1 QuerydslPredicateExecutor provides access to specific finder methods for Predicate.
2 QuerydslBinderCustomizer defined on the repository interface is automatically picked up and shortcuts @QuerydslPredicate(bindings=…​).
3 Define the binding for the username property to be a simple contains binding.
4 Define the default binding for String properties to be a case-insensitive contains match.
5 Exclude the password property from Predicate resolution.
You can register a QuerydslBinderCustomizerDefaults bean holding default Querydsl bindings before applying specific bindings from the repository or @QuerydslPredicate.

5.8.3. Repository Populators

If you work with the Spring JDBC module, you are probably familiar with the support for populating a DataSource with SQL scripts. A similar abstraction is available on the repositories level, although it does not use SQL as the data definition language because it must be store-independent. Thus, the populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define data with which to populate the repositories.

Assume you have a file called data.json with the following content:

Example 49. Data defined in JSON
[ { "_class" : "com.acme.Person",
 "firstname" : "Dave",
  "lastname" : "Matthews" },
  { "_class" : "com.acme.Person",
 "firstname" : "Carter",
  "lastname" : "Beauford" } ]

You can populate your repositories by using the populator elements of the repository namespace provided in Spring Data Commons. To populate the preceding data to your PersonRepository, declare a populator similar to the following:

Example 50. Declaring a Jackson repository populator
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:repository="http://www.springframework.org/schema/data/repository"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    https://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/data/repository
    https://www.springframework.org/schema/data/repository/spring-repository.xsd">

  <repository:jackson2-populator locations="classpath:data.json" />

</beans>

The preceding declaration causes the data.json file to be read and deserialized by a Jackson ObjectMapper.

The type to which the JSON object is unmarshalled is determined by inspecting the _class attribute of the JSON document. The infrastructure eventually selects the appropriate repository to handle the object that was deserialized.

To instead use XML to define the data the repositories should be populated with, you can use the unmarshaller-populator element. You configure it to use one of the XML marshaller options available in Spring OXM. See the Spring reference documentation for details. The following example shows how to unmarshall a repository populator with JAXB:

Example 51. Declaring an unmarshalling repository populator (using JAXB)
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:repository="http://www.springframework.org/schema/data/repository"
  xmlns:oxm="http://www.springframework.org/schema/oxm"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    https://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/data/repository
    https://www.springframework.org/schema/data/repository/spring-repository.xsd
    http://www.springframework.org/schema/oxm
    https://www.springframework.org/schema/oxm/spring-oxm.xsd">

  <repository:unmarshaller-populator locations="classpath:data.json"
    unmarshaller-ref="unmarshaller" />

  <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

Reference Documentation

6. LDAP Repositories

This chapter points out the specialties for repository support for LDAP. It builds on the core repository support explained in Working with Spring Data Repositories. You should have a sound understanding of the basic concepts explained there.

You should keep in mind the following points as you work with Spring LDAP repositories:

  • Spring LDAP repositories can be enabled by using a <data-ldap:repositories> tag in your XML configuration or by using an @EnableLdapRepositories annotation on a configuration class.

  • To include support for LdapQuery parameters in automatically generated repositories, have your interface extend LdapRepository rather than CrudRepository.

  • All Spring LDAP repositories must work with entities annotated with the ODM annotations, as described in Object-Directory Mapping.

  • Since all ODM managed classes must have a Distinguished Name as the ID, all Spring LDAP repositories must have the ID type parameter set to javax.naming.Name. Indeed, the built-in LdapRepository only takes one type parameter: the managed entity class, which defaults the ID to javax.naming.Name.

  • Due to specifics of the LDAP protocol, paging and sorting are not supported for Spring LDAP repositories.

You must use ODM annotations, such as org.springframework.ldap.odm.annotations.Id. Using Spring Data’s annotation does not work, because Spring LDAP uses its own mapping layer.

6.1. Usage

To access domain entities stored in a LDAP-compliant directory, you can use our sophisticated repository support that significantly eases implementation. To do so, create an interface for your repository, as the following example shows:

Example 52. Sample Person entity
@Entry(objectClasses = { "person", "top" }, base="ou=someOu")
public class Person {

   @Id
   private Name dn;

   @Attribute(name="cn")
   @DnAttribute(value="cn", index=1)
   private String fullName;

   @Attribute(name="firstName")
   private String firstName;

   // No @Attribute annotation means this is bound to the LDAP attribute
   // with the same value
   private String firstName;

   @DnAttribute(value="ou", index=0)
   @Transient
   private String company;

   @Transient
   private String someUnmappedField;
   // ...more attributes below
}

We have a simple domain object here. Note that it has a property named dn of type Name. With that domain object, we can create a repository to persist objects of that type by defining an interface for it, as follows:

Example 53. Basic repository interface to persist Person entities
public interface PersonRepository extends CrudRepository<Person, Long> {

  // additional custom finder methods go here
}

Right now, this interface serves only typing purposes, but we can add additional methods to it later. In your Spring configuration, add the following:

Example 54. General LDAP repository Spring configuration
Java
@Configuration
@EnableLdapRepositories("com.acme.*.repositories")
class MyConfig {

  @Bean
  ContextSource contextSource() {

    LdapContextSource ldapContextSource = new LdapContextSource();

    ldapContextSource.setUserDn("cn=Admin");
    ldapContextSource.setPassword("secret");
    ldapContextSource.setUrl("ldap://127.0.0.1:389");

    return ldapContextSource;
  }

  @Bean
  LdapTemplate ldapTemplate(ContextSource contextSource) {
    return new LdapTemplate(contextSource);
  }
}
XML
<beans xmlns="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:ldap="http://www.springframework.org/schema/ldap"
  xmlns:data-ldap="http://www.springframework.org/schema/data/ldap"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    https://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/ldap
    https://www.springframework.org/schema/ldap/spring-ldap.xsd
    http://www.springframework.org/schema/data/ldap
    https://www.springframework.org/schema/data/ldap/spring-ldap.xsd">

  <ldap:context-source url="ldap://127.0.0.1:389"
                     username="cn=Admin"
                     password="secret" />

  <ldap:ldap-template />

  <data-ldap:repositories base-package="com.acme.*.repositories" />

</beans>

This configuration causes the base packages to be scanned for interfaces that extend LdapRepository and create Spring beans for each one found. By default, the repositories get an autowired LdapTemplate Spring bean that is called ldapTemplate, so you only need to configure ldap-template-ref explicitly if you deviate from this convention.

If you want to go with Java configuration, use the @EnableLdapRepositories annotation. The annotation carries the same attributes as the namespace element. If no base package is configured, the infrastructure scans the package of the annotated configuration class.

Because our domain repository extends CrudRepository, it provides you with CRUD operations as well as methods for access to the entities. Working with the repository instance is a matter of dependency injecting it into a client.

We can add paging access to our repository, as follows:

Example 55. Paging access to Person entities
@ExtendWith({SpringExtension.class})
@ContextConfiguration
class PersonRepositoryTests {

    @Autowired PersonRepository repository;

    @Test
    void readAll() {

      List<Person> persons = repository.findAll();
      assertThat(persons.isEmpty(), is(false));
    }
}

The sample creates an application context with Spring’s unit test support, which will perform annotation-based dependency injection into test cases. Inside the test method, we use the repository to query the datastore.

6.2. Query Methods

Most of the data access operations you usually trigger on a repository result in a query being run against the LDAP directory. Defining such a query is a matter of declaring a method on the repository interface, as the following example shows:

Example 56. PersonRepository with query methods
interface PersonRepository extends PagingAndSortingRepository<Person, String> {

    List<Person> findByLastname(String lastname);                            (1)

    List<Person> findByLastnameFirstname(String lastname, String firstname); (2)
}
1 The method shows a query for all people with the given lastname. The query is derived by parsing the method name for constraints that can be concatenated with And and Or. Thus, the method name results in a query expression of (&(objectclass=person)(lastname=lastname)).
2 The method shows a query for all people with the given lastname and firstname. The query is derived by parsing the method name. Thus, the method name results in a query expression of (&(objectclass=person)(lastname=lastname)(firstname=firstname)).

The following table provides samples of the keywords that you can use with query methods:

Table 3. Supported keywords for query methods
Keyword Sample Logical result

LessThanEqual

findByAgeLessThanEqual(int age)

(attribute⇐age)

GreaterThanEqual

findByAgeGreaterThanEqual(int age)

(attribute>=age)

IsNotNull, NotNull

findByFirstnameNotNull()

(firstname=*)

IsNull, Null

findByFirstnameNull()

(!(firstname=*))

Like

findByFirstnameLike(String name)

(firstname=name)

NotLike, IsNotLike

findByFirstnameNotLike(String name)

(!(firstname=name*))

StartingWith

findByStartingWith(String name)

(firstname=name*)

EndingWith

findByFirstnameLike(String name)

(firstname=*name)

Containing

findByFirstnameLike(String name)

(firstname=*name*)

(No keyword)

findByFirstname(String name)

(Firstname=name)

Not

findByFirstnameNot(String name)

(!(Firstname=name))

6.2.1. Projections

Spring Data query methods usually return one or multiple instances of the aggregate root managed by the repository. However, it might sometimes be desirable to create projections based on certain attributes of those types. Spring Data allows modeling dedicated return types, to more selectively retrieve partial views of the managed aggregates.

Imagine a repository and aggregate root type such as the following example:

Example 57. A sample aggregate and repository
class Person {

  @Id UUID id;
  String firstname, lastname;
  Address address;

  static class Address {
    String zipCode, city, street;
  }
}

interface PersonRepository extends Repository<Person, UUID> {

  Collection<Person> findByLastname(String lastname);
}

Now imagine that we want to retrieve the person’s name attributes only. What means does Spring Data offer to achieve this? The rest of this chapter answers that question.

Projection types are types residing outside the entity’s type hierarchy. Superclasses and interfaces implemented by the entity are inside the type hierarchy hence returning a supertype (or implemented interface) returns an instance of the fully materialized entity.
Interface-based Projections

The easiest way to limit the result of the queries to only the name attributes is by declaring an interface that exposes accessor methods for the properties to be read, as shown in the following example:

Example 58. A projection interface to retrieve a subset of attributes
interface NamesOnly {

  String getFirstname();
  String getLastname();
}

The important bit here is that the properties defined here exactly match properties in the aggregate root. Doing so lets a query method be added as follows:

Example 59. A repository using an interface based projection with a query method
interface PersonRepository extends Repository<Person, UUID> {

  Collection<NamesOnly> findByLastname(String lastname);
}

The query execution engine creates proxy instances of that interface at runtime for each element returned and forwards calls to the exposed methods to the target object.

Declaring a method in your Repository that overrides a base method (e.g. declared in CrudRepository, a store-specific repository interface, or the Simple…Repository) results in a call to the base method regardless of the declared return type. Make sure to use a compatible return type as base methods cannot be used for projections. Some store modules support @Query annotations to turn an overridden base method into a query method that then can be used to return projections.

Projections can be used recursively. If you want to include some of the Address information as well, create a projection interface for that and return that interface from the declaration of getAddress(), as shown in the following example:

Example 60. A projection interface to retrieve a subset of attributes
interface PersonSummary {

  String getFirstname();
  String getLastname();
  AddressSummary getAddress();

  interface AddressSummary {
    String getCity();
  }
}

On method invocation, the address property of the target instance is obtained and wrapped into a projecting proxy in turn.

Closed Projections

A projection interface whose accessor methods all match properties of the target aggregate is considered to be a closed projection. The following example (which we used earlier in this chapter, too) is a closed projection:

Example 61. A closed projection
interface NamesOnly {

  String getFirstname();
  String getLastname();
}

If you use a closed projection, Spring Data can optimize the query execution, because we know about all the attributes that are needed to back the projection proxy. For more details on that, see the module-specific part of the reference documentation.

Open Projections

Accessor methods in projection interfaces can also be used to compute new values by using the @Value annotation, as shown in the following example:

Example 62. An Open Projection
interface NamesOnly {

  @Value("#{target.firstname + ' ' + target.lastname}")
  String getFullName();
  …
}

The aggregate root backing the projection is available in the target variable. A projection interface using @Value is an open projection. Spring Data cannot apply query execution optimizations in this case, because the SpEL expression could use any attribute of the aggregate root.

The expressions used in @Value should not be too complex — you want to avoid programming in String variables. For very simple expressions, one option might be to resort to default methods (introduced in Java 8), as shown in the following example:

Example 63. A projection interface using a default method for custom logic
interface NamesOnly {

  String getFirstname();
  String getLastname();

  default String getFullName() {
    return getFirstname().concat(" ").concat(getLastname());
  }
}

This approach requires you to be able to implement logic purely based on the other accessor methods exposed on the projection interface. A second, more flexible, option is to implement the custom logic in a Spring bean and then invoke that from the SpEL expression, as shown in the following example:

Example 64. Sample Person object
@Component
class MyBean {

  String getFullName(Person person) {
    …
  }
}

interface NamesOnly {

  @Value("#{@myBean.getFullName(target)}")
  String getFullName();
  …
}

Notice how the SpEL expression refers to myBean and invokes the getFullName(…) method and forwards the projection target as a method parameter. Methods backed by SpEL expression evaluation can also use method parameters, which can then be referred to from the expression. The method parameters are available through an Object array named args. The following example shows how to get a method parameter from the args array:

Example 65. Sample Person object
interface NamesOnly {

  @Value("#{args[0] + ' ' + target.firstname + '!'}")
  String getSalutation(String prefix);
}

Again, for more complex expressions, you should use a Spring bean and let the expression invoke a method, as described earlier.

Nullable Wrappers

Getters in projection interfaces can make use of nullable wrappers for improved null-safety. Currently supported wrapper types are:

  • java.util.Optional

  • com.google.common.base.Optional

  • scala.Option

  • io.vavr.control.Option

Example 66. A projection interface using nullable wrappers
interface NamesOnly {

  Optional<String> getFirstname();
}

If the underlying projection value is not null, then values are returned using the present-representation of the wrapper type. In case the backing value is null, then the getter method returns the empty representation of the used wrapper type.

Class-based Projections (DTOs)

Another way of defining projections is by using value type DTOs (Data Transfer Objects) that hold properties for the fields that are supposed to be retrieved. These DTO types can be used in exactly the same way projection interfaces are used, except that no proxying happens and no nested projections can be applied.

If the store optimizes the query execution by limiting the fields to be loaded, the fields to be loaded are determined from the parameter names of the constructor that is exposed.

The following example shows a projecting DTO:

Example 67. A projecting DTO
record NamesOnly(String firstname, String lastname) {
}

Java Records are ideal to define DTO types since they adhere to value semantics: All fields are private final and equals(…)/hashCode()/toString() methods are created automatically. Alternatively, you can use any class that defines the properties you want to project.

Dynamic Projections

So far, we have used the projection type as the return type or element type of a collection. However, you might want to select the type to be used at invocation time (which makes it dynamic). To apply dynamic projections, use a query method such as the one shown in the following example:

Example 68. A repository using a dynamic projection parameter
interface PersonRepository extends Repository<Person, UUID> {

  <T> Collection<T> findByLastname(String lastname, Class<T> type);
}

This way, the method can be used to obtain the aggregates as is or with a projection applied, as shown in the following example:

Example 69. Using a repository with dynamic projections
void someMethod(PersonRepository people) {

  Collection<Person> aggregates =
    people.findByLastname("Matthews", Person.class);

  Collection<NamesOnly> aggregates =
    people.findByLastname("Matthews", NamesOnly.class);
}
Query parameters of type Class are inspected whether they qualify as dynamic projection parameter. If the actual return type of the query equals the generic parameter type of the Class parameter, then the matching Class parameter is not available for usage within the query or SpEL expressions. If you want to use a Class parameter as query argument then make sure to use a different generic parameter, for example Class<?>.

6.2.2. QueryDSL Support

Basic QueryDSL support is included in Spring LDAP. This support includes the following:

  • An Annotation Processor, LdapAnnotationProcessor, for generating QueryDSL classes based on Spring LDAP ODM annotations. See Object-Directory Mapping for more information on the ODM annotations.

  • A Query implementation, QueryDslLdapQuery, for building and running QueryDSL queries in code.

  • Spring Data repository support for QueryDSL predicates. QueryDslPredicateExecutor includes a number of additional methods with appropriate parameters. You can extend this interface (along with LdapRepository) to include this support in your repository.

6.3. Miscellaneous

6.3.1. CDI Integration

Instances of the repository interfaces are usually created by a container, for which Spring is the most natural choice when working with Spring Data. As of version 2.1, Spring Data LDAP includes a custom CDI extension that lets you use the repository abstraction in CDI environments. The extension is part of the JAR. To activate it, drop the Spring Data LDAP JAR into your classpath. You can now set up the infrastructure by implementing a CDI Producer for the LdapTemplate, as the following example shows:

class LdapTemplateProducer {

    @Produces
    @ApplicationScoped
    public LdapOperations createLdapTemplate() {

        ContextSource contextSource = …
        return new LdapTemplate(contextSource);
    }
}

The Spring Data LDAP CDI extension picks up the LdapTemplate as a CDI bean and creates a proxy for a Spring Data repository whenever a bean of a repository type is requested by the container. Thus, obtaining an instance of a Spring Data repository is a matter of declaring an injected property, as the following example shows:

class RepositoryClient {

  @Inject
  PersonRepository repository;

  public void businessMethod() {
    List<Person> people = repository.findAll();
  }
}

Appendix

Appendix A: Namespace reference

The <repositories /> Element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The most important attribute is base-package, which defines the package to scan for Spring Data repository interfaces. See “XML Configuration”. The following table describes the attributes of the <repositories /> element:

Table 4. Attributes
Name Description

base-package

Defines the package to be scanned for repository interfaces that extend *Repository (the actual interface is determined by the specific Spring Data module) in auto-detection mode. All packages below the configured package are scanned, too. Wildcards are allowed.

repository-impl-postfix

Defines the postfix to autodetect custom repository implementations. Classes whose names end with the configured postfix are considered as candidates. Defaults to Impl.

query-lookup-strategy

Determines the strategy to be used to create finder queries. See “Query Lookup Strategies” for details. Defaults to create-if-not-found.

named-queries-location

Defines the location to search for a Properties file containing externally defined queries.

consider-nested-repositories

Whether nested repository interface definitions should be considered. Defaults to false.

Appendix B: Populators namespace reference

The <populator /> element

The <populator /> element allows to populate a data store via the Spring Data repository infrastructure.[1]

Table 5. Attributes
Name Description

locations

Where to find the files to read the objects from the repository shall be populated with.

Appendix C: Repository query keywords

Supported query method subject keywords

The following table lists the subject keywords generally supported by the Spring Data repository query derivation mechanism to express the predicate. Consult the store-specific documentation for the exact list of supported keywords, because some keywords listed here might not be supported in a particular store.

Table 6. Query subject keywords
Keyword Description

find…By, read…By, get…By, query…By, search…By, stream…By

General query method returning typically the repository type, a Collection or Streamable subtype or a result wrapper such as Page, GeoResults or any other store-specific result wrapper. Can be used as findBy…, findMyDomainTypeBy… or in combination with additional keywords.

exists…By

Exists projection, returning typically a boolean result.

count…By

Count projection returning a numeric result.

delete…By, remove…By

Delete query method returning either no result (void) or the delete count.

…First<number>…, …Top<number>…

Limit the query results to the first <number> of results. This keyword can occur in any place of the subject between find (and the other keywords) and by.

…Distinct…

Use a distinct query to return only unique results. Consult the store-specific documentation whether that feature is supported. This keyword can occur in any place of the subject between find (and the other keywords) and by.

Supported query method predicate keywords and modifiers

The following table lists the predicate keywords generally supported by the Spring Data repository query derivation mechanism. However, consult the store-specific documentation for the exact list of supported keywords, because some keywords listed here might not be supported in a particular store.

Table 7. Query predicate keywords
Logical keyword Keyword expressions

AND

And

OR

Or

AFTER

After, IsAfter

BEFORE

Before, IsBefore

CONTAINING

Containing, IsContaining, Contains

BETWEEN

Between, IsBetween

ENDING_WITH

EndingWith, IsEndingWith, EndsWith

EXISTS

Exists

FALSE

False, IsFalse

GREATER_THAN

GreaterThan, IsGreaterThan

GREATER_THAN_EQUALS

GreaterThanEqual, IsGreaterThanEqual

IN

In, IsIn

IS

Is, Equals, (or no keyword)

IS_EMPTY

IsEmpty, Empty

IS_NOT_EMPTY

IsNotEmpty, NotEmpty

IS_NOT_NULL

NotNull, IsNotNull

IS_NULL

Null, IsNull

LESS_THAN

LessThan, IsLessThan

LESS_THAN_EQUAL

LessThanEqual, IsLessThanEqual

LIKE

Like, IsLike

NEAR

Near, IsNear

NOT

Not, IsNot

NOT_IN

NotIn, IsNotIn

NOT_LIKE

NotLike, IsNotLike

REGEX

Regex, MatchesRegex, Matches

STARTING_WITH

StartingWith, IsStartingWith, StartsWith

TRUE

True, IsTrue

WITHIN

Within, IsWithin

In addition to filter predicates, the following list of modifiers is supported:

Table 8. Query predicate modifier keywords
Keyword Description

IgnoreCase, IgnoringCase

Used with a predicate keyword for case-insensitive comparison.

AllIgnoreCase, AllIgnoringCase

Ignore case for all suitable properties. Used somewhere in the query method predicate.

OrderBy…

Specify a static sorting order followed by the property path and direction (e. g. OrderByFirstnameAscLastnameDesc).

Appendix D: Repository query return types

Supported Query Return Types

The following table lists the return types generally supported by Spring Data repositories. However, consult the store-specific documentation for the exact list of supported return types, because some types listed here might not be supported in a particular store.

Geospatial types (such as GeoResult, GeoResults, and GeoPage) are available only for data stores that support geospatial queries. Some store modules may define their own result wrapper types.
Table 9. Query return types
Return type Description

void

Denotes no return value.

Primitives

Java primitives.

Wrapper types

Java wrapper types.

T

A unique entity. Expects the query method to return one result at most. If no result is found, null is returned. More than one result triggers an IncorrectResultSizeDataAccessException.

Iterator<T>

An Iterator.

Collection<T>

A Collection.

List<T>

A List.

Optional<T>

A Java 8 or Guava Optional. Expects the query method to return one result at most. If no result is found, Optional.empty() or Optional.absent() is returned. More than one result triggers an IncorrectResultSizeDataAccessException.

Option<T>

Either a Scala or Vavr Option type. Semantically the same behavior as Java 8’s Optional, described earlier.

Stream<T>

A Java 8 Stream.

Streamable<T>

A convenience extension of Iterable that directy exposes methods to stream, map and filter results, concatenate them etc.

Types that implement Streamable and take a Streamable constructor or factory method argument

Types that expose a constructor or ….of(…)/….valueOf(…) factory method taking a Streamable as argument. See Returning Custom Streamable Wrapper Types for details.

Vavr Seq, List, Map, Set

Vavr collection types. See Support for Vavr Collections for details.

Future<T>

A Future. Expects a method to be annotated with @Async and requires Spring’s asynchronous method execution capability to be enabled.

CompletableFuture<T>

A Java 8 CompletableFuture. Expects a method to be annotated with @Async and requires Spring’s asynchronous method execution capability to be enabled.

Slice<T>

A sized chunk of data with an indication of whether there is more data available. Requires a Pageable method parameter.

Page<T>

A Slice with additional information, such as the total number of results. Requires a Pageable method parameter.

GeoResult<T>

A result entry with additional information, such as the distance to a reference location.

GeoResults<T>

A list of GeoResult<T> with additional information, such as the average distance to a reference location.

GeoPage<T>

A Page with GeoResult<T>, such as the average distance to a reference location.

Mono<T>

A Project Reactor Mono emitting zero or one element using reactive repositories. Expects the query method to return one result at most. If no result is found, Mono.empty() is returned. More than one result triggers an IncorrectResultSizeDataAccessException.

Flux<T>

A Project Reactor Flux emitting zero, one, or many elements using reactive repositories. Queries returning Flux can emit also an infinite number of elements.

Single<T>

A RxJava Single emitting a single element using reactive repositories. Expects the query method to return one result at most. If no result is found, Mono.empty() is returned. More than one result triggers an IncorrectResultSizeDataAccessException.

Maybe<T>

A RxJava Maybe emitting zero or one element using reactive repositories. Expects the query method to return one result at most. If no result is found, Mono.empty() is returned. More than one result triggers an IncorrectResultSizeDataAccessException.

Flowable<T>

A RxJava Flowable emitting zero, one, or many elements using reactive repositories. Queries returning Flowable can emit also an infinite number of elements.