This version is still in development and is not considered stable yet. For the latest stable version, please use Spring Security 6.1.11! |
OAuth 2.0 Resource Server Opaque Token
Minimal Dependencies for Introspection
As described in Minimal Dependencies for JWT, most Resource Server support is collected in spring-security-oauth2-resource-server
.
However, unless you provide a custom ReactiveOpaqueTokenIntrospector
, the Resource Server falls back to ReactiveOpaqueTokenIntrospector
.
This means that both spring-security-oauth2-resource-server
and oauth2-oidc-sdk
are necessary to have a working minimal Resource Server that supports opaque Bearer Tokens.
See spring-security-oauth2-resource-server
in order to determine the correct version for oauth2-oidc-sdk
.
Minimal Configuration for Introspection
Typically, you can verify an opaque token with an OAuth 2.0 Introspection Endpoint, hosted by the authorization server. This can be handy when revocation is a requirement.
When using Spring Boot, configuring an application as a resource server that uses introspection consists of two steps:
-
Include the needed dependencies.
-
Indicate the introspection endpoint details.
Specifying the Authorization Server
You can specify where the introspection endpoint is:
spring:
security:
oauth2:
resourceserver:
opaque-token:
introspection-uri: https://idp.example.com/introspect
client-id: client
client-secret: secret
Where idp.example.com/introspect
is the introspection endpoint hosted by your authorization server and client-id
and client-secret
are the credentials needed to hit that endpoint.
Resource Server uses these properties to further self-configure and subsequently validate incoming JWTs.
If the authorization server responses that the token is valid, then it is. |
Startup Expectations
When this property and these dependencies are used, Resource Server automatically configures itself to validate Opaque Bearer Tokens.
This startup process is quite a bit simpler than for JWTs, since no endpoints need to be discovered and no additional validation rules get added.
Runtime Expectations
Once the application has started, Resource Server tries to process any request containing an Authorization: Bearer
header:
GET / HTTP/1.1
Authorization: Bearer some-token-value # Resource Server will process this
So long as this scheme is indicated, Resource Server tries to process the request according to the Bearer Token specification.
Given an Opaque Token, Resource Server:
-
Queries the provided introspection endpoint by using the provided credentials and the token.
-
Inspects the response for an
{ 'active' : true }
attribute. -
Maps each scope to an authority with a prefix of
SCOPE_
.
By default, the resulting Authentication#getPrincipal
is a Spring Security OAuth2AuthenticatedPrincipal
object, and Authentication#getName
maps to the token’s sub
property, if one is present.
From here, you may want to jump to:
Looking Up Attributes After Authentication
Once a token is authenticated, an instance of BearerTokenAuthentication
is set in the SecurityContext
.
This means that it is available in @Controller
methods when you use @EnableWebFlux
in your configuration:
-
Java
-
Kotlin
@GetMapping("/foo")
public Mono<String> foo(BearerTokenAuthentication authentication) {
return Mono.just(authentication.getTokenAttributes().get("sub") + " is the subject");
}
@GetMapping("/foo")
fun foo(authentication: BearerTokenAuthentication): Mono<String> {
return Mono.just(authentication.tokenAttributes["sub"].toString() + " is the subject")
}
Since BearerTokenAuthentication
holds an OAuth2AuthenticatedPrincipal
, that also means that it’s available to controller methods, too:
-
Java
-
Kotlin
@GetMapping("/foo")
public Mono<String> foo(@AuthenticationPrincipal OAuth2AuthenticatedPrincipal principal) {
return Mono.just(principal.getAttribute("sub") + " is the subject");
}
@GetMapping("/foo")
fun foo(@AuthenticationPrincipal principal: OAuth2AuthenticatedPrincipal): Mono<String> {
return Mono.just(principal.getAttribute<Any>("sub").toString() + " is the subject")
}
Looking Up Attributes with SpEL
You can access attributes with the Spring Expression Language (SpEL).
For example, if you use @EnableReactiveMethodSecurity
so that you can use @PreAuthorize
annotations, you can do:
-
Java
-
Kotlin
@PreAuthorize("principal?.attributes['sub'] = 'foo'")
public Mono<String> forFoosEyesOnly() {
return Mono.just("foo");
}
@PreAuthorize("principal.attributes['sub'] = 'foo'")
fun forFoosEyesOnly(): Mono<String> {
return Mono.just("foo")
}
Overriding or Replacing Boot Auto Configuration
Spring Boot generates two @Bean
instances for Resource Server.
The first is a SecurityWebFilterChain
that configures the application as a resource server.
When you use an Opaque Token, this SecurityWebFilterChain
looks like:
-
Java
-
Kotlin
@Bean
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
http
.authorizeExchange(exchanges -> exchanges
.anyExchange().authenticated()
)
.oauth2ResourceServer(ServerHttpSecurity.OAuth2ResourceServerSpec::opaqueToken)
return http.build();
}
@Bean
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
return http {
authorizeExchange {
authorize(anyExchange, authenticated)
}
oauth2ResourceServer {
opaqueToken { }
}
}
}
If the application does not expose a SecurityWebFilterChain
bean, Spring Boot exposes the default bean (shown in the preceding listing).
You can replace it by exposing the bean within the application:
-
Java
-
Kotlin
@Configuration
@EnableWebFluxSecurity
public class MyCustomSecurityConfiguration {
@Bean
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
http
.authorizeExchange(exchanges -> exchanges
.pathMatchers("/messages/**").hasAuthority("SCOPE_message:read")
.anyExchange().authenticated()
)
.oauth2ResourceServer(oauth2 -> oauth2
.opaqueToken(opaqueToken -> opaqueToken
.introspector(myIntrospector())
)
);
return http.build();
}
}
@Bean
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
return http {
authorizeExchange {
authorize("/messages/**", hasAuthority("SCOPE_message:read"))
authorize(anyExchange, authenticated)
}
oauth2ResourceServer {
opaqueToken {
introspector = myIntrospector()
}
}
}
}
The preceding example requires the scope of message:read
for any URL that starts with /messages/
.
Methods on the oauth2ResourceServer
DSL also override or replace auto configuration.
For example, the second @Bean
Spring Boot creates is a ReactiveOpaqueTokenIntrospector
, which decodes String
tokens into validated instances of OAuth2AuthenticatedPrincipal
:
-
Java
-
Kotlin
@Bean
public ReactiveOpaqueTokenIntrospector introspector() {
return new NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret);
}
@Bean
fun introspector(): ReactiveOpaqueTokenIntrospector {
return NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret)
}
If the application does not expose a ReactiveOpaqueTokenIntrospector
bean, Spring Boot exposes the default one (shown in the preceding listing).
You can override its configuration by using introspectionUri()
and introspectionClientCredentials()
or replace it by using introspector()
.
Using introspectionUri()
You can configure an authorization server’s Introspection URI as a configuration property, or you can supply in the DSL:
-
Java
-
Kotlin
@Configuration
@EnableWebFluxSecurity
public class DirectlyConfiguredIntrospectionUri {
@Bean
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
http
.authorizeExchange(exchanges -> exchanges
.anyExchange().authenticated()
)
.oauth2ResourceServer(oauth2 -> oauth2
.opaqueToken(opaqueToken -> opaqueToken
.introspectionUri("https://idp.example.com/introspect")
.introspectionClientCredentials("client", "secret")
)
);
return http.build();
}
}
@Bean
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
return http {
authorizeExchange {
authorize(anyExchange, authenticated)
}
oauth2ResourceServer {
opaqueToken {
introspectionUri = "https://idp.example.com/introspect"
introspectionClientCredentials("client", "secret")
}
}
}
}
Using introspectionUri()
takes precedence over any configuration property.
Using introspector()
introspector()
is more powerful than introspectionUri()
. It completely replaces any Boot auto-configuration of ReactiveOpaqueTokenIntrospector
:
-
Java
-
Kotlin
@Configuration
@EnableWebFluxSecurity
public class DirectlyConfiguredIntrospector {
@Bean
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
http
.authorizeExchange(exchanges -> exchanges
.anyExchange().authenticated()
)
.oauth2ResourceServer(oauth2 -> oauth2
.opaqueToken(opaqueToken -> opaqueToken
.introspector(myCustomIntrospector())
)
);
return http.build();
}
}
@Bean
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
return http {
authorizeExchange {
authorize(anyExchange, authenticated)
}
oauth2ResourceServer {
opaqueToken {
introspector = myCustomIntrospector()
}
}
}
}
This is handy when deeper configuration, such as authority mappingor JWT revocation, is necessary.
Exposing a ReactiveOpaqueTokenIntrospector
@Bean
Or, exposing a ReactiveOpaqueTokenIntrospector
@Bean
has the same effect as introspector()
:
-
Java
-
Kotlin
@Bean
public ReactiveOpaqueTokenIntrospector introspector() {
return new NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret);
}
@Bean
fun introspector(): ReactiveOpaqueTokenIntrospector {
return NimbusReactiveOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret)
}
Configuring Authorization
An OAuth 2.0 Introspection endpoint typically returns a scope
attribute, indicating the scopes (or authorities) it has been granted — for example:
{ ..., "scope" : "messages contacts"}
When this is the case, Resource Server tries to coerce these scopes into a list of granted authorities, prefixing each scope with a string: SCOPE_
.
This means that, to protect an endpoint or method with a scope derived from an Opaque Token, the corresponding expressions should include this prefix:
-
Java
-
Kotlin
@Configuration
@EnableWebFluxSecurity
public class MappedAuthorities {
@Bean
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
http
.authorizeExchange(exchange -> exchange
.pathMatchers("/contacts/**").hasAuthority("SCOPE_contacts")
.pathMatchers("/messages/**").hasAuthority("SCOPE_messages")
.anyExchange().authenticated()
)
.oauth2ResourceServer(ServerHttpSecurity.OAuth2ResourceServerSpec::opaqueToken);
return http.build();
}
}
@Bean
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
return http {
authorizeExchange {
authorize("/contacts/**", hasAuthority("SCOPE_contacts"))
authorize("/messages/**", hasAuthority("SCOPE_messages"))
authorize(anyExchange, authenticated)
}
oauth2ResourceServer {
opaqueToken { }
}
}
}
You can do something similar with method security:
-
Java
-
Kotlin
@PreAuthorize("hasAuthority('SCOPE_messages')")
public Flux<Message> getMessages(...) {}
@PreAuthorize("hasAuthority('SCOPE_messages')")
fun getMessages(): Flux<Message> { }
Extracting Authorities Manually
By default, Opaque Token support extracts the scope claim from an introspection response and parses it into individual GrantedAuthority
instances.
Consider the following example:
{
"active" : true,
"scope" : "message:read message:write"
}
If the introspection response were as the preceding example shows, Resource Server would generate an Authentication
with two authorities, one for message:read
and the other for message:write
.
You can customize behavior by using a custom ReactiveOpaqueTokenIntrospector
that looks at the attribute set and converts in its own way:
-
Java
-
Kotlin
public class CustomAuthoritiesOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector {
private ReactiveOpaqueTokenIntrospector delegate =
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) {
return this.delegate.introspect(token)
.map(principal -> new DefaultOAuth2AuthenticatedPrincipal(
principal.getName(), principal.getAttributes(), extractAuthorities(principal)));
}
private Collection<GrantedAuthority> extractAuthorities(OAuth2AuthenticatedPrincipal principal) {
List<String> scopes = principal.getAttribute(OAuth2IntrospectionClaimNames.SCOPE);
return scopes.stream()
.map(SimpleGrantedAuthority::new)
.collect(Collectors.toList());
}
}
class CustomAuthoritiesOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector {
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret")
override fun introspect(token: String): Mono<OAuth2AuthenticatedPrincipal> {
return delegate.introspect(token)
.map { principal: OAuth2AuthenticatedPrincipal ->
DefaultOAuth2AuthenticatedPrincipal(
principal.name, principal.attributes, extractAuthorities(principal))
}
}
private fun extractAuthorities(principal: OAuth2AuthenticatedPrincipal): Collection<GrantedAuthority> {
val scopes = principal.getAttribute<List<String>>(OAuth2IntrospectionClaimNames.SCOPE)
return scopes
.map { SimpleGrantedAuthority(it) }
}
}
Thereafter, you can configure this custom introspector by exposing it as a @Bean
:
-
Java
-
Kotlin
@Bean
public ReactiveOpaqueTokenIntrospector introspector() {
return new CustomAuthoritiesOpaqueTokenIntrospector();
}
@Bean
fun introspector(): ReactiveOpaqueTokenIntrospector {
return CustomAuthoritiesOpaqueTokenIntrospector()
}
Using Introspection with JWTs
A common question is whether or not introspection is compatible with JWTs. Spring Security’s Opaque Token support has been designed to not care about the format of the token. It gladly passes any token to the provided introspection endpoint.
So, suppose you need to check with the authorization server on each request, in case the JWT has been revoked.
Even though you are using the JWT format for the token, your validation method is introspection, meaning you would want to do:
spring:
security:
oauth2:
resourceserver:
opaque-token:
introspection-uri: https://idp.example.org/introspection
client-id: client
client-secret: secret
In this case, the resulting Authentication
would be BearerTokenAuthentication
.
Any attributes in the corresponding OAuth2AuthenticatedPrincipal
would be whatever was returned by the introspection endpoint.
However, suppose that, for whatever reason, the introspection endpoint returns only whether or not the token is active. Now what?
In this case, you can create a custom ReactiveOpaqueTokenIntrospector
that still hits the endpoint but then updates the returned principal to have the JWTs claims as the attributes:
-
Java
-
Kotlin
public class JwtOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector {
private ReactiveOpaqueTokenIntrospector delegate =
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");
private ReactiveJwtDecoder jwtDecoder = new NimbusReactiveJwtDecoder(new ParseOnlyJWTProcessor());
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) {
return this.delegate.introspect(token)
.flatMap(principal -> this.jwtDecoder.decode(token))
.map(jwt -> new DefaultOAuth2AuthenticatedPrincipal(jwt.getClaims(), NO_AUTHORITIES));
}
private static class ParseOnlyJWTProcessor implements Converter<JWT, Mono<JWTClaimsSet>> {
public Mono<JWTClaimsSet> convert(JWT jwt) {
try {
return Mono.just(jwt.getJWTClaimsSet());
} catch (Exception ex) {
return Mono.error(ex);
}
}
}
}
class JwtOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector {
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret")
private val jwtDecoder: ReactiveJwtDecoder = NimbusReactiveJwtDecoder(ParseOnlyJWTProcessor())
override fun introspect(token: String): Mono<OAuth2AuthenticatedPrincipal> {
return delegate.introspect(token)
.flatMap { jwtDecoder.decode(token) }
.map { jwt: Jwt -> DefaultOAuth2AuthenticatedPrincipal(jwt.claims, NO_AUTHORITIES) }
}
private class ParseOnlyJWTProcessor : Converter<JWT, Mono<JWTClaimsSet>> {
override fun convert(jwt: JWT): Mono<JWTClaimsSet> {
return try {
Mono.just(jwt.jwtClaimsSet)
} catch (e: Exception) {
Mono.error(e)
}
}
}
}
Thereafter, you can configure this custom introspector by exposing it as a @Bean
:
-
Java
-
Kotlin
@Bean
public ReactiveOpaqueTokenIntrospector introspector() {
return new JwtOpaqueTokenIntropsector();
}
@Bean
fun introspector(): ReactiveOpaqueTokenIntrospector {
return JwtOpaqueTokenIntrospector()
}
Calling a /userinfo
Endpoint
Generally speaking, a Resource Server does not care about the underlying user but, instead, cares about the authorities that have been granted.
That said, at times it can be valuable to tie the authorization statement back to a user.
If an application also uses spring-security-oauth2-client
, having set up the appropriate ClientRegistrationRepository
, you can do so with a custom OpaqueTokenIntrospector
.
The implementation in the next listing does three things:
-
Delegates to the introspection endpoint, to affirm the token’s validity.
-
Looks up the appropriate client registration associated with the
/userinfo
endpoint. -
Invokes and returns the response from the
/userinfo
endpoint.
-
Java
-
Kotlin
public class UserInfoOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector {
private final ReactiveOpaqueTokenIntrospector delegate =
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");
private final ReactiveOAuth2UserService<OAuth2UserRequest, OAuth2User> oauth2UserService =
new DefaultReactiveOAuth2UserService();
private final ReactiveClientRegistrationRepository repository;
// ... constructor
@Override
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) {
return Mono.zip(this.delegate.introspect(token), this.repository.findByRegistrationId("registration-id"))
.map(t -> {
OAuth2AuthenticatedPrincipal authorized = t.getT1();
ClientRegistration clientRegistration = t.getT2();
Instant issuedAt = authorized.getAttribute(ISSUED_AT);
Instant expiresAt = authorized.getAttribute(OAuth2IntrospectionClaimNames.EXPIRES_AT);
OAuth2AccessToken accessToken = new OAuth2AccessToken(BEARER, token, issuedAt, expiresAt);
return new OAuth2UserRequest(clientRegistration, accessToken);
})
.flatMap(this.oauth2UserService::loadUser);
}
}
class UserInfoOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector {
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret")
private val oauth2UserService: ReactiveOAuth2UserService<OAuth2UserRequest, OAuth2User> = DefaultReactiveOAuth2UserService()
private val repository: ReactiveClientRegistrationRepository? = null
// ... constructor
override fun introspect(token: String?): Mono<OAuth2AuthenticatedPrincipal> {
return Mono.zip<OAuth2AuthenticatedPrincipal, ClientRegistration>(delegate.introspect(token), repository!!.findByRegistrationId("registration-id"))
.map<OAuth2UserRequest> { t: Tuple2<OAuth2AuthenticatedPrincipal, ClientRegistration> ->
val authorized = t.t1
val clientRegistration = t.t2
val issuedAt: Instant? = authorized.getAttribute(ISSUED_AT)
val expiresAt: Instant? = authorized.getAttribute(OAuth2IntrospectionClaimNames.EXPIRES_AT)
val accessToken = OAuth2AccessToken(BEARER, token, issuedAt, expiresAt)
OAuth2UserRequest(clientRegistration, accessToken)
}
.flatMap { userRequest: OAuth2UserRequest -> oauth2UserService.loadUser(userRequest) }
}
}
If you aren’t using spring-security-oauth2-client
, it’s still quite simple.
You will simply need to invoke the /userinfo
with your own instance of WebClient
:
-
Java
-
Kotlin
public class UserInfoOpaqueTokenIntrospector implements ReactiveOpaqueTokenIntrospector {
private final ReactiveOpaqueTokenIntrospector delegate =
new NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret");
private final WebClient rest = WebClient.create();
@Override
public Mono<OAuth2AuthenticatedPrincipal> introspect(String token) {
return this.delegate.introspect(token)
.map(this::makeUserInfoRequest);
}
}
class UserInfoOpaqueTokenIntrospector : ReactiveOpaqueTokenIntrospector {
private val delegate: ReactiveOpaqueTokenIntrospector = NimbusReactiveOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret")
private val rest: WebClient = WebClient.create()
override fun introspect(token: String): Mono<OAuth2AuthenticatedPrincipal> {
return delegate.introspect(token)
.map(this::makeUserInfoRequest)
}
}
Either way, having created your ReactiveOpaqueTokenIntrospector
, you should publish it as a @Bean
to override the defaults:
-
Java
-
Kotlin
@Bean
ReactiveOpaqueTokenIntrospector introspector() {
return new UserInfoOpaqueTokenIntrospector();
}
@Bean
fun introspector(): ReactiveOpaqueTokenIntrospector {
return UserInfoOpaqueTokenIntrospector()
}