XML Schema Authoring

Since version 2.0, Spring has featured a mechanism for adding schema-based extensions to the basic Spring XML format for defining and configuring beans. This section covers how to write your own custom XML bean definition parsers and integrate such parsers into the Spring IoC container.

To facilitate authoring configuration files that use a schema-aware XML editor, Spring’s extensible XML configuration mechanism is based on XML Schema. If you are not familiar with Spring’s current XML configuration extensions that come with the standard Spring distribution, you should first read the previous section on XML Schemas.

To create new XML configuration extensions:

  1. Author an XML schema to describe your custom element(s).

  2. Code a custom NamespaceHandler implementation.

  3. Code one or more BeanDefinitionParser implementations (this is where the real work is done).

  4. Register your new artifacts with Spring.

For a unified example, we create an XML extension (a custom XML element) that lets us configure objects of the type SimpleDateFormat (from the java.text package). When we are done, we will be able to define bean definitions of type SimpleDateFormat as follows:

<myns:dateformat id="dateFormat"
	pattern="yyyy-MM-dd HH:mm"
	lenient="true"/>

(We include much more detailed examples follow later in this appendix. The intent of this first simple example is to walk you through the basic steps of making a custom extension.)

Authoring the Schema

Creating an XML configuration extension for use with Spring’s IoC container starts with authoring an XML Schema to describe the extension. For our example, we use the following schema to configure SimpleDateFormat objects:

<!-- myns.xsd (inside package org/springframework/samples/xml) -->

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://www.mycompany.example/schema/myns"
		xmlns:xsd="http://www.w3.org/2001/XMLSchema"
		xmlns:beans="http://www.springframework.org/schema/beans"
		targetNamespace="http://www.mycompany.example/schema/myns"
		elementFormDefault="qualified"
		attributeFormDefault="unqualified">

	<xsd:import namespace="http://www.springframework.org/schema/beans"/>

	<xsd:element name="dateformat">
		<xsd:complexType>
			<xsd:complexContent>
				<xsd:extension base="beans:identifiedType"> (1)
					<xsd:attribute name="lenient" type="xsd:boolean"/>
					<xsd:attribute name="pattern" type="xsd:string" use="required"/>
				</xsd:extension>
			</xsd:complexContent>
		</xsd:complexType>
	</xsd:element>
</xsd:schema>
1 The indicated line contains an extension base for all identifiable tags (meaning they have an id attribute that we can use as the bean identifier in the container). We can use this attribute because we imported the Spring-provided beans namespace.

The preceding schema lets us configure SimpleDateFormat objects directly in an XML application context file by using the <myns:dateformat/> element, as the following example shows:

<myns:dateformat id="dateFormat"
	pattern="yyyy-MM-dd HH:mm"
	lenient="true"/>

Note that, after we have created the infrastructure classes, the preceding snippet of XML is essentially the same as the following XML snippet:

<bean id="dateFormat" class="java.text.SimpleDateFormat">
	<constructor-arg value="yyyy-MM-dd HH:mm"/>
	<property name="lenient" value="true"/>
</bean>

The second of the two preceding snippets creates a bean in the container (identified by the name dateFormat of type SimpleDateFormat) with a couple of properties set.

The schema-based approach to creating configuration format allows for tight integration with an IDE that has a schema-aware XML editor. By using a properly authored schema, you can use autocompletion to let a user choose between several configuration options defined in the enumeration.

Coding a NamespaceHandler

In addition to the schema, we need a NamespaceHandler to parse all elements of this specific namespace that Spring encounters while parsing configuration files. For this example, the NamespaceHandler should take care of the parsing of the myns:dateformat element.

The NamespaceHandler interface features three methods:

  • init(): Allows for initialization of the NamespaceHandler and is called by Spring before the handler is used.

  • BeanDefinition parse(Element, ParserContext): Called when Spring encounters a top-level element (not nested inside a bean definition or a different namespace). This method can itself register bean definitions, return a bean definition, or both.

  • BeanDefinitionHolder decorate(Node, BeanDefinitionHolder, ParserContext): Called when Spring encounters an attribute or nested element of a different namespace. The decoration of one or more bean definitions is used (for example) with the scopes that Spring supports. We start by highlighting a simple example, without using decoration, after which we show decoration in a somewhat more advanced example.

Although you can code your own NamespaceHandler for the entire namespace (and hence provide code that parses each and every element in the namespace), it is often the case that each top-level XML element in a Spring XML configuration file results in a single bean definition (as in our case, where a single <myns:dateformat/> element results in a single SimpleDateFormat bean definition). Spring features a number of convenience classes that support this scenario. In the following example, we use the NamespaceHandlerSupport class:

  • Java

  • Kotlin

package org.springframework.samples.xml;

import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

public class MyNamespaceHandler extends NamespaceHandlerSupport {

	public void init() {
		registerBeanDefinitionParser("dateformat", new SimpleDateFormatBeanDefinitionParser());
	}
}
package org.springframework.samples.xml

import org.springframework.beans.factory.xml.NamespaceHandlerSupport

class MyNamespaceHandler : NamespaceHandlerSupport {

	override fun init() {
		registerBeanDefinitionParser("dateformat", SimpleDateFormatBeanDefinitionParser())
	}
}

You may notice that there is not actually a whole lot of parsing logic in this class. Indeed, the NamespaceHandlerSupport class has a built-in notion of delegation. It supports the registration of any number of BeanDefinitionParser instances, to which it delegates to when it needs to parse an element in its namespace. This clean separation of concerns lets a NamespaceHandler handle the orchestration of the parsing of all of the custom elements in its namespace while delegating to BeanDefinitionParsers to do the grunt work of the XML parsing. This means that each BeanDefinitionParser contains only the logic for parsing a single custom element, as we can see in the next step.

Using BeanDefinitionParser

A BeanDefinitionParser is used if the NamespaceHandler encounters an XML element of the type that has been mapped to the specific bean definition parser (dateformat in this case). In other words, the BeanDefinitionParser is responsible for parsing one distinct top-level XML element defined in the schema. In the parser, we' have access to the XML element (and thus to its subelements, too) so that we can parse our custom XML content, as you can see in the following example:

  • Java

  • Kotlin

package org.springframework.samples.xml;

import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser;
import org.springframework.util.StringUtils;
import org.w3c.dom.Element;

import java.text.SimpleDateFormat;

public class SimpleDateFormatBeanDefinitionParser extends AbstractSingleBeanDefinitionParser { (1)

	protected Class getBeanClass(Element element) {
		return SimpleDateFormat.class; (2)
	}

	protected void doParse(Element element, BeanDefinitionBuilder bean) {
		// this will never be null since the schema explicitly requires that a value be supplied
		String pattern = element.getAttribute("pattern");
		bean.addConstructorArgValue(pattern);

		// this however is an optional property
		String lenient = element.getAttribute("lenient");
		if (StringUtils.hasText(lenient)) {
			bean.addPropertyValue("lenient", Boolean.valueOf(lenient));
		}
	}

}
1 We use the Spring-provided AbstractSingleBeanDefinitionParser to handle a lot of the basic grunt work of creating a single BeanDefinition.
2 We supply the AbstractSingleBeanDefinitionParser superclass with the type that our single BeanDefinition represents.
package org.springframework.samples.xml

import org.springframework.beans.factory.support.BeanDefinitionBuilder
import org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser
import org.springframework.util.StringUtils
import org.w3c.dom.Element

import java.text.SimpleDateFormat

class SimpleDateFormatBeanDefinitionParser : AbstractSingleBeanDefinitionParser() { (1)

	override fun getBeanClass(element: Element): Class<*>? { (2)
		return SimpleDateFormat::class.java
	}

	override fun doParse(element: Element, bean: BeanDefinitionBuilder) {
		// this will never be null since the schema explicitly requires that a value be supplied
		val pattern = element.getAttribute("pattern")
		bean.addConstructorArgValue(pattern)

		// this however is an optional property
		val lenient = element.getAttribute("lenient")
		if (StringUtils.hasText(lenient)) {
			bean.addPropertyValue("lenient", java.lang.Boolean.valueOf(lenient))
		}
	}
}
1 We use the Spring-provided AbstractSingleBeanDefinitionParser to handle a lot of the basic grunt work of creating a single BeanDefinition.
2 We supply the AbstractSingleBeanDefinitionParser superclass with the type that our single BeanDefinition represents.

In this simple case, this is all that we need to do. The creation of our single BeanDefinition is handled by the AbstractSingleBeanDefinitionParser superclass, as is the extraction and setting of the bean definition’s unique identifier.

Registering the Handler and the Schema

The coding is finished. All that remains to be done is to make the Spring XML parsing infrastructure aware of our custom element. We do so by registering our custom namespaceHandler and custom XSD file in two special-purpose properties files. These properties files are both placed in a META-INF directory in your application and can, for example, be distributed alongside your binary classes in a JAR file. The Spring XML parsing infrastructure automatically picks up your new extension by consuming these special properties files, the formats of which are detailed in the next two sections.

Writing META-INF/spring.handlers

The properties file called spring.handlers contains a mapping of XML Schema URIs to namespace handler classes. For our example, we need to write the following:

http\://www.mycompany.example/schema/myns=org.springframework.samples.xml.MyNamespaceHandler

(The : character is a valid delimiter in the Java properties format, so : character in the URI needs to be escaped with a backslash.)

The first part (the key) of the key-value pair is the URI associated with your custom namespace extension and needs to exactly match exactly the value of the targetNamespace attribute, as specified in your custom XSD schema.

Writing 'META-INF/spring.schemas'

The properties file called spring.schemas contains a mapping of XML Schema locations (referred to, along with the schema declaration, in XML files that use the schema as part of the xsi:schemaLocation attribute) to classpath resources. This file is needed to prevent Spring from absolutely having to use a default EntityResolver that requires Internet access to retrieve the schema file. If you specify the mapping in this properties file, Spring searches for the schema (in this case, myns.xsd in the org.springframework.samples.xml package) on the classpath. The following snippet shows the line we need to add for our custom schema:

http\://www.mycompany.example/schema/myns/myns.xsd=org/springframework/samples/xml/myns.xsd

(Remember that the : character must be escaped.)

You are encouraged to deploy your XSD file (or files) right alongside the NamespaceHandler and BeanDefinitionParser classes on the classpath.

Using a Custom Extension in Your Spring XML Configuration

Using a custom extension that you yourself have implemented is no different from using one of the “custom” extensions that Spring provides. The following example uses the custom <dateformat/> element developed in the previous steps in a Spring XML configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:myns="http://www.mycompany.example/schema/myns"
	xsi:schemaLocation="
		http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd
		http://www.mycompany.example/schema/myns http://www.mycompany.com/schema/myns/myns.xsd">

	<!-- as a top-level bean -->
	<myns:dateformat id="defaultDateFormat" pattern="yyyy-MM-dd HH:mm" lenient="true"/> (1)

	<bean id="jobDetailTemplate" abstract="true">
		<property name="dateFormat">
			<!-- as an inner bean -->
			<myns:dateformat pattern="HH:mm MM-dd-yyyy"/>
		</property>
	</bean>

</beans>
1 Our custom bean.

More Detailed Examples

This section presents some more detailed examples of custom XML extensions.

Nesting Custom Elements within Custom Elements

The example presented in this section shows how you to write the various artifacts required to satisfy a target of the following configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:foo="http://www.foo.example/schema/component"
	xsi:schemaLocation="
		http://www.springframework.org/schema/beans https://www.springframework.org/schema/beans/spring-beans.xsd
		http://www.foo.example/schema/component http://www.foo.example/schema/component/component.xsd">

	<foo:component id="bionic-family" name="Bionic-1">
		<foo:component name="Mother-1">
			<foo:component name="Karate-1"/>
			<foo:component name="Sport-1"/>
		</foo:component>
		<foo:component name="Rock-1"/>
	</foo:component>

</beans>

The preceding configuration nests custom extensions within each other. The class that is actually configured by the <foo:component/> element is the Component class (shown in the next example). Notice how the Component class does not expose a setter method for the components property. This makes it hard (or rather impossible) to configure a bean definition for the Component class by using setter injection. The following listing shows the Component class:

  • Java

  • Kotlin

package com.foo;

import java.util.ArrayList;
import java.util.List;

public class Component {

	private String name;
	private List<Component> components = new ArrayList<Component> ();

	// there is no setter method for the 'components'
	public void addComponent(Component component) {
		this.components.add(component);
	}

	public List<Component> getComponents() {
		return components;
	}

	public String getName() {
		return name;
	}

	public void setName(String name) {
		this.name = name;
	}
}
package com.foo

import java.util.ArrayList

class Component {

	var name: String? = null
	private val components = ArrayList<Component>()

	// there is no setter method for the 'components'
	fun addComponent(component: Component) {
		this.components.add(component)
	}

	fun getComponents(): List<Component> {
		return components
	}
}

The typical solution to this issue is to create a custom FactoryBean that exposes a setter property for the components property. The following listing shows such a custom FactoryBean:

  • Java

  • Kotlin

package com.foo;

import org.springframework.beans.factory.FactoryBean;

import java.util.List;

public class ComponentFactoryBean implements FactoryBean<Component> {

	private Component parent;
	private List<Component> children;

	public void setParent(Component parent) {
		this.parent = parent;
	}

	public void setChildren(List<Component> children) {
		this.children = children;
	}

	public Component getObject() throws Exception {
		if (this.children != null && this.children.size() > 0) {
			for (Component child : children) {
				this.parent.addComponent(child);
			}
		}
		return this.parent;
	}

	public Class<Component> getObjectType() {
		return Component.class;
	}

	public boolean isSingleton() {
		return true;
	}
}
package com.foo

import org.springframework.beans.factory.FactoryBean
import org.springframework.stereotype.Component

class ComponentFactoryBean : FactoryBean<Component> {

	private var parent: Component? = null
	private var children: List<Component>? = null

	fun setParent(parent: Component) {
		this.parent = parent
	}

	fun setChildren(children: List<Component>) {
		this.children = children
	}

	override fun getObject(): Component? {
		if (this.children != null && this.children!!.isNotEmpty()) {
			for (child in children!!) {
				this.parent!!.addComponent(child)
			}
		}
		return this.parent
	}

	override fun getObjectType(): Class<Component>? {
		return Component::class.java
	}

	override fun isSingleton(): Boolean {
		return true
	}
}

This works nicely, but it exposes a lot of Spring plumbing to the end user. What we are going to do is write a custom extension that hides away all of this Spring plumbing. If we stick to the steps described previously, we start off by creating the XSD schema to define the structure of our custom tag, as the following listing shows:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xsd:schema xmlns="http://www.foo.example/schema/component"
		xmlns:xsd="http://www.w3.org/2001/XMLSchema"
		targetNamespace="http://www.foo.example/schema/component"
		elementFormDefault="qualified"
		attributeFormDefault="unqualified">

	<xsd:element name="component">
		<xsd:complexType>
			<xsd:choice minOccurs="0" maxOccurs="unbounded">
				<xsd:element ref="component"/>
			</xsd:choice>
			<xsd:attribute name="id" type="xsd:ID"/>
			<xsd:attribute name="name" use="required" type="xsd:string"/>
		</xsd:complexType>
	</xsd:element>

</xsd:schema>

Again following the process described earlier, we then create a custom NamespaceHandler:

  • Java

  • Kotlin

package com.foo;

import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

public class ComponentNamespaceHandler extends NamespaceHandlerSupport {

	public void init() {
		registerBeanDefinitionParser("component", new ComponentBeanDefinitionParser());
	}
}
package com.foo

import org.springframework.beans.factory.xml.NamespaceHandlerSupport

class ComponentNamespaceHandler : NamespaceHandlerSupport() {

	override fun init() {
		registerBeanDefinitionParser("component", ComponentBeanDefinitionParser())
	}
}

Next up is the custom BeanDefinitionParser. Remember that we are creating a BeanDefinition that describes a ComponentFactoryBean. The following listing shows our custom BeanDefinitionParser implementation:

  • Java

  • Kotlin

package com.foo;

import org.springframework.beans.factory.config.BeanDefinition;
import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.support.ManagedList;
import org.springframework.beans.factory.xml.AbstractBeanDefinitionParser;
import org.springframework.beans.factory.xml.ParserContext;
import org.springframework.util.xml.DomUtils;
import org.w3c.dom.Element;

import java.util.List;

public class ComponentBeanDefinitionParser extends AbstractBeanDefinitionParser {

	protected AbstractBeanDefinition parseInternal(Element element, ParserContext parserContext) {
		return parseComponentElement(element);
	}

	private static AbstractBeanDefinition parseComponentElement(Element element) {
		BeanDefinitionBuilder factory = BeanDefinitionBuilder.rootBeanDefinition(ComponentFactoryBean.class);
		factory.addPropertyValue("parent", parseComponent(element));

		List<Element> childElements = DomUtils.getChildElementsByTagName(element, "component");
		if (childElements != null && childElements.size() > 0) {
			parseChildComponents(childElements, factory);
		}

		return factory.getBeanDefinition();
	}

	private static BeanDefinition parseComponent(Element element) {
		BeanDefinitionBuilder component = BeanDefinitionBuilder.rootBeanDefinition(Component.class);
		component.addPropertyValue("name", element.getAttribute("name"));
		return component.getBeanDefinition();
	}

	private static void parseChildComponents(List<Element> childElements, BeanDefinitionBuilder factory) {
		ManagedList<BeanDefinition> children = new ManagedList<>(childElements.size());
		for (Element element : childElements) {
			children.add(parseComponentElement(element));
		}
		factory.addPropertyValue("children", children);
	}
}
package com.foo

import org.springframework.beans.factory.config.BeanDefinition
import org.springframework.beans.factory.support.AbstractBeanDefinition
import org.springframework.beans.factory.support.BeanDefinitionBuilder
import org.springframework.beans.factory.support.ManagedList
import org.springframework.beans.factory.xml.AbstractBeanDefinitionParser
import org.springframework.beans.factory.xml.ParserContext
import org.springframework.util.xml.DomUtils
import org.w3c.dom.Element

import java.util.List

class ComponentBeanDefinitionParser : AbstractBeanDefinitionParser() {

	override fun parseInternal(element: Element, parserContext: ParserContext): AbstractBeanDefinition? {
		return parseComponentElement(element)
	}

	private fun parseComponentElement(element: Element): AbstractBeanDefinition {
		val factory = BeanDefinitionBuilder.rootBeanDefinition(ComponentFactoryBean::class.java)
		factory.addPropertyValue("parent", parseComponent(element))

		val childElements = DomUtils.getChildElementsByTagName(element, "component")
		if (childElements != null && childElements.size > 0) {
			parseChildComponents(childElements, factory)
		}

		return factory.getBeanDefinition()
	}

	private fun parseComponent(element: Element): BeanDefinition {
		val component = BeanDefinitionBuilder.rootBeanDefinition(Component::class.java)
		component.addPropertyValue("name", element.getAttribute("name"))
		return component.beanDefinition
	}

	private fun parseChildComponents(childElements: List<Element>, factory: BeanDefinitionBuilder) {
		val children = ManagedList<BeanDefinition>(childElements.size)
		for (element in childElements) {
			children.add(parseComponentElement(element))
		}
		factory.addPropertyValue("children", children)
	}
}

Finally, the various artifacts need to be registered with the Spring XML infrastructure, by modifying the META-INF/spring.handlers and META-INF/spring.schemas files, as follows:

# in 'META-INF/spring.handlers'
http\://www.foo.example/schema/component=com.foo.ComponentNamespaceHandler
# in 'META-INF/spring.schemas'
http\://www.foo.example/schema/component/component.xsd=com/foo/component.xsd

Custom Attributes on “Normal” Elements

Writing your own custom parser and the associated artifacts is not hard. However, it is sometimes not the right thing to do. Consider a scenario where you need to add metadata to already existing bean definitions. In this case, you certainly do not want to have to write your own entire custom extension. Rather, you merely want to add an additional attribute to the existing bean definition element.

By way of another example, suppose that you define a bean definition for a service object that (unknown to it) accesses a clustered JCache, and you want to ensure that the named JCache instance is eagerly started within the surrounding cluster. The following listing shows such a definition:

<bean id="checkingAccountService" class="com.foo.DefaultCheckingAccountService"
		jcache:cache-name="checking.account">
	<!-- other dependencies here... -->
</bean>

We can then create another BeanDefinition when the 'jcache:cache-name' attribute is parsed. This BeanDefinition then initializes the named JCache for us. We can also modify the existing BeanDefinition for the 'checkingAccountService' so that it has a dependency on this new JCache-initializing BeanDefinition. The following listing shows our JCacheInitializer:

  • Java

  • Kotlin

package com.foo;

public class JCacheInitializer {

	private final String name;

	public JCacheInitializer(String name) {
		this.name = name;
	}

	public void initialize() {
		// lots of JCache API calls to initialize the named cache...
	}
}
package com.foo

class JCacheInitializer(private val name: String) {

	fun initialize() {
		// lots of JCache API calls to initialize the named cache...
	}
}

Now we can move onto the custom extension. First, we need to author the XSD schema that describes the custom attribute, as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xsd:schema xmlns="http://www.foo.example/schema/jcache"
		xmlns:xsd="http://www.w3.org/2001/XMLSchema"
		targetNamespace="http://www.foo.example/schema/jcache"
		elementFormDefault="qualified">

	<xsd:attribute name="cache-name" type="xsd:string"/>

</xsd:schema>

Next, we need to create the associated NamespaceHandler, as follows:

  • Java

  • Kotlin

package com.foo;

import org.springframework.beans.factory.xml.NamespaceHandlerSupport;

public class JCacheNamespaceHandler extends NamespaceHandlerSupport {

	public void init() {
		super.registerBeanDefinitionDecoratorForAttribute("cache-name",
			new JCacheInitializingBeanDefinitionDecorator());
	}

}
package com.foo

import org.springframework.beans.factory.xml.NamespaceHandlerSupport

class JCacheNamespaceHandler : NamespaceHandlerSupport() {

	override fun init() {
		super.registerBeanDefinitionDecoratorForAttribute("cache-name",
				JCacheInitializingBeanDefinitionDecorator())
	}

}

Next, we need to create the parser. Note that, in this case, because we are going to parse an XML attribute, we write a BeanDefinitionDecorator rather than a BeanDefinitionParser. The following listing shows our BeanDefinitionDecorator implementation:

  • Java

  • Kotlin

package com.foo;

import org.springframework.beans.factory.config.BeanDefinitionHolder;
import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.xml.BeanDefinitionDecorator;
import org.springframework.beans.factory.xml.ParserContext;
import org.w3c.dom.Attr;
import org.w3c.dom.Node;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class JCacheInitializingBeanDefinitionDecorator implements BeanDefinitionDecorator {

	private static final String[] EMPTY_STRING_ARRAY = new String[0];

	public BeanDefinitionHolder decorate(Node source, BeanDefinitionHolder holder,
			ParserContext ctx) {
		String initializerBeanName = registerJCacheInitializer(source, ctx);
		createDependencyOnJCacheInitializer(holder, initializerBeanName);
		return holder;
	}

	private void createDependencyOnJCacheInitializer(BeanDefinitionHolder holder,
			String initializerBeanName) {
		AbstractBeanDefinition definition = ((AbstractBeanDefinition) holder.getBeanDefinition());
		String[] dependsOn = definition.getDependsOn();
		if (dependsOn == null) {
			dependsOn = new String[]{initializerBeanName};
		} else {
			List dependencies = new ArrayList(Arrays.asList(dependsOn));
			dependencies.add(initializerBeanName);
			dependsOn = (String[]) dependencies.toArray(EMPTY_STRING_ARRAY);
		}
		definition.setDependsOn(dependsOn);
	}

	private String registerJCacheInitializer(Node source, ParserContext ctx) {
		String cacheName = ((Attr) source).getValue();
		String beanName = cacheName + "-initializer";
		if (!ctx.getRegistry().containsBeanDefinition(beanName)) {
			BeanDefinitionBuilder initializer = BeanDefinitionBuilder.rootBeanDefinition(JCacheInitializer.class);
			initializer.addConstructorArg(cacheName);
			ctx.getRegistry().registerBeanDefinition(beanName, initializer.getBeanDefinition());
		}
		return beanName;
	}
}
package com.foo

import org.springframework.beans.factory.config.BeanDefinitionHolder
import org.springframework.beans.factory.support.AbstractBeanDefinition
import org.springframework.beans.factory.support.BeanDefinitionBuilder
import org.springframework.beans.factory.xml.BeanDefinitionDecorator
import org.springframework.beans.factory.xml.ParserContext
import org.w3c.dom.Attr
import org.w3c.dom.Node

import java.util.ArrayList

class JCacheInitializingBeanDefinitionDecorator : BeanDefinitionDecorator {

	override fun decorate(source: Node, holder: BeanDefinitionHolder,
						ctx: ParserContext): BeanDefinitionHolder {
		val initializerBeanName = registerJCacheInitializer(source, ctx)
		createDependencyOnJCacheInitializer(holder, initializerBeanName)
		return holder
	}

	private fun createDependencyOnJCacheInitializer(holder: BeanDefinitionHolder,
													initializerBeanName: String) {
		val definition = holder.beanDefinition as AbstractBeanDefinition
		var dependsOn = definition.dependsOn
		dependsOn = if (dependsOn == null) {
			arrayOf(initializerBeanName)
		} else {
			val dependencies = ArrayList(listOf(*dependsOn))
			dependencies.add(initializerBeanName)
			dependencies.toTypedArray()
		}
		definition.setDependsOn(*dependsOn)
	}

	private fun registerJCacheInitializer(source: Node, ctx: ParserContext): String {
		val cacheName = (source as Attr).value
		val beanName = "$cacheName-initializer"
		if (!ctx.registry.containsBeanDefinition(beanName)) {
			val initializer = BeanDefinitionBuilder.rootBeanDefinition(JCacheInitializer::class.java)
			initializer.addConstructorArg(cacheName)
			ctx.registry.registerBeanDefinition(beanName, initializer.getBeanDefinition())
		}
		return beanName
	}
}

Finally, we need to register the various artifacts with the Spring XML infrastructure by modifying the META-INF/spring.handlers and META-INF/spring.schemas files, as follows:

# in 'META-INF/spring.handlers'
http\://www.foo.example/schema/jcache=com.foo.JCacheNamespaceHandler
# in 'META-INF/spring.schemas'
http\://www.foo.example/schema/jcache/jcache.xsd=com/foo/jcache.xsd