This version is still in development and is not considered stable yet. For the latest stable version, please use Spring Security 6.1.12! |
Expression-Based Access Control
Overview
Spring Security uses Spring EL for expression support and you should look at how that works if you are interested in understanding the topic in more depth. Expressions are evaluated with a "root object" as part of the evaluation context. Spring Security uses specific classes for web and method security as the root object, in order to provide built-in expressions and access to values such as the current principal.
Common Built-In Expressions
The base class for expression root objects is SecurityExpressionRoot
.
This provides some common expressions which are available in both web and method security.
Expression | Description |
---|---|
|
Returns For example, By default if the supplied role does not start with 'ROLE_' it will be added.
This can be customized by modifying the |
|
Returns For example, By default if the supplied role does not start with 'ROLE_' it will be added.
This can be customized by modifying the |
|
Returns For example, |
|
Returns For example, |
|
Allows direct access to the principal object representing the current user |
|
Allows direct access to the current |
|
Always evaluates to |
|
Always evaluates to |
|
Returns |
|
Returns |
|
Returns |
|
Returns |
|
Returns |
|
Returns |
Web Security Expressions
To use expressions to secure individual URLs, you would first need to set the use-expressions
attribute in the <http>
element to true
.
Spring Security will then expect the access
attributes of the <intercept-url>
elements to contain Spring EL expressions.
The expressions should evaluate to a Boolean, defining whether access should be allowed or not.
For example:
<http>
<intercept-url pattern="/admin*"
access="hasRole('admin') and hasIpAddress('192.168.1.0/24')"/>
...
</http>
Here we have defined that the "admin" area of an application (defined by the URL pattern) should only be available to users who have the granted authority "admin" and whose IP address matches a local subnet.
We’ve already seen the built-in hasRole
expression in the previous section.
The expression hasIpAddress
is an additional built-in expression which is specific to web security.
It is defined by the WebSecurityExpressionRoot
class, an instance of which is used as the expression root object when evaluating web-access expressions.
This object also directly exposed the HttpServletRequest
object under the name request
so you can invoke the request directly in an expression.
If expressions are being used, a WebExpressionVoter
will be added to the AccessDecisionManager
which is used by the namespace.
So if you aren’t using the namespace and want to use expressions, you will have to add one of these to your configuration.
Referring to Beans in Web Security Expressions
If you wish to extend the expressions that are available, you can easily refer to any Spring Bean you expose.
For example, assuming you have a Bean with the name of webSecurity
that contains the following method signature:
-
Java
-
Kotlin
public class WebSecurity {
public boolean check(Authentication authentication, HttpServletRequest request) {
...
}
}
class WebSecurity {
fun check(authentication: Authentication?, request: HttpServletRequest?): Boolean {
// ...
}
}
You could refer to the method using:
-
Java
-
XML
-
Kotlin
http
.authorizeHttpRequests(authorize -> authorize
.requestMatchers("/user/**").access(new WebExpressionAuthorizationManager("@webSecurity.check(authentication,request)"))
...
)
<http>
<intercept-url pattern="/user/**"
access="@webSecurity.check(authentication,request)"/>
...
</http>
http {
authorizeRequests {
authorize("/user/**", "@webSecurity.check(authentication,request)")
}
}
Path Variables in Web Security Expressions
At times it is nice to be able to refer to path variables within a URL.
For example, consider a RESTful application that looks up a user by id from the URL path in the format /user/{userId}
.
You can easily refer to the path variable by placing it in the pattern.
For example, if you had a Bean with the name of webSecurity
that contains the following method signature:
-
Java
-
Kotlin
public class WebSecurity {
public boolean checkUserId(Authentication authentication, int id) {
...
}
}
class WebSecurity {
fun checkUserId(authentication: Authentication?, id: Int): Boolean {
// ...
}
}
You could refer to the method using:
-
Java
-
XML
-
Kotlin
http
.authorizeHttpRequests(authorize -> authorize
.requestMatchers("/user/{userId}/**").access(new WebExpressionAuthorizationManager("@webSecurity.checkUserId(authentication,#userId)"))
...
);
<http>
<intercept-url pattern="/user/{userId}/**"
access="@webSecurity.checkUserId(authentication,#userId)"/>
...
</http>
http {
authorizeRequests {
authorize("/user/{userId}/**", "@webSecurity.checkUserId(authentication,#userId)")
}
}
In this configuration URLs that match would pass in the path variable (and convert it) into checkUserId method.
For example, if the URL were /user/123/resource
, then the id passed in would be 123
.
Method Security Expressions
Method security is a bit more complicated than a simple allow or deny rule. Spring Security 3.0 introduced some new annotations in order to allow comprehensive support for the use of expressions.
@Pre and @Post Annotations
There are four annotations which support expression attributes to allow pre and post-invocation authorization checks and also to support filtering of submitted collection arguments or return values.
They are @PreAuthorize
, @PreFilter
, @PostAuthorize
and @PostFilter
.
Their use is enabled through the global-method-security
namespace element:
<global-method-security pre-post-annotations="enabled"/>
Access Control using @PreAuthorize and @PostAuthorize
The most obviously useful annotation is @PreAuthorize
which decides whether a method can actually be invoked or not.
For example (from the Contacts sample application)
-
Java
-
Kotlin
@PreAuthorize("hasRole('USER')")
public void create(Contact contact);
@PreAuthorize("hasRole('USER')")
fun create(contact: Contact?)
which means that access will only be allowed for users with the role "ROLE_USER". Obviously the same thing could easily be achieved using a traditional configuration and a simple configuration attribute for the required role. But what about:
-
Java
-
Kotlin
@PreAuthorize("hasPermission(#contact, 'admin')")
public void deletePermission(Contact contact, Sid recipient, Permission permission);
@PreAuthorize("hasPermission(#contact, 'admin')")
fun deletePermission(contact: Contact?, recipient: Sid?, permission: Permission?)
Here we’re actually using a method argument as part of the expression to decide whether the current user has the "admin" permission for the given contact.
The built-in hasPermission()
expression is linked into the Spring Security ACL module through the application context, as we’ll see below.
You can access any of the method arguments by name as expression variables.
There are a number of ways in which Spring Security can resolve the method arguments.
Spring Security uses DefaultSecurityParameterNameDiscoverer
to discover the parameter names.
By default, the following options are tried for a method as a whole.
-
If Spring Security’s
@P
annotation is present on a single argument to the method, the value will be used. This is useful for interfaces compiled with a JDK prior to JDK 8 which do not contain any information about the parameter names. For example:-
Java
-
Kotlin
import org.springframework.security.access.method.P; ... @PreAuthorize("#c.name == authentication.name") public void doSomething(@P("c") Contact contact);
import org.springframework.security.access.method.P ... @PreAuthorize("#c.name == authentication.name") fun doSomething(@P("c") contact: Contact?)
Behind the scenes this is implemented using
AnnotationParameterNameDiscoverer
which can be customized to support the value attribute of any specified annotation. -
-
If Spring Data’s
@Param
annotation is present on at least one parameter for the method, the value will be used. This is useful for interfaces compiled with a JDK prior to JDK 8 which do not contain any information about the parameter names. For example:-
Java
-
Kotlin
import org.springframework.data.repository.query.Param; ... @PreAuthorize("#n == authentication.name") Contact findContactByName(@Param("n") String name);
import org.springframework.data.repository.query.Param ... @PreAuthorize("#n == authentication.name") fun findContactByName(@Param("n") name: String?): Contact?
Behind the scenes this is implemented using
AnnotationParameterNameDiscoverer
which can be customized to support the value attribute of any specified annotation. -
-
If JDK 8 was used to compile the source with the -parameters argument and Spring 4+ is being used, then the standard JDK reflection API is used to discover the parameter names. This works on both classes and interfaces.
-
Last, if the code was compiled with the debug symbols, the parameter names will be discovered using the debug symbols. This will not work for interfaces since they do not have debug information about the parameter names. For interfaces, annotations or the JDK 8 approach must be used.
Any Spring-EL functionality is available within the expression, so you can also access properties on the arguments. For example, if you wanted a particular method to only allow access to a user whose username matched that of the contact, you could write
-
Java
-
Kotlin
@PreAuthorize("#contact.name == authentication.name")
public void doSomething(Contact contact);
@PreAuthorize("#contact.name == authentication.name")
fun doSomething(contact: Contact?)
Here we are accessing another built-in expression, authentication
, which is the Authentication
stored in the security context.
You can also access its "principal" property directly, using the expression principal
.
The value will often be a UserDetails
instance, so you might use an expression like principal.username
or principal.enabled
.
Filtering using @PreFilter and @PostFilter
Spring Security supports filtering of collections, arrays, maps and streams using expressions. This is most commonly performed on the return value of a method. For example:
-
Java
-
Kotlin
@PreAuthorize("hasRole('USER')")
@PostFilter("hasPermission(filterObject, 'read') or hasPermission(filterObject, 'admin')")
public List<Contact> getAll();
@PreAuthorize("hasRole('USER')")
@PostFilter("hasPermission(filterObject, 'read') or hasPermission(filterObject, 'admin')")
fun getAll(): List<Contact?>
When using the @PostFilter
annotation, Spring Security iterates through the returned collection or map and removes any elements for which the supplied expression is false.
For an array, a new array instance will be returned containing filtered elements.
The name filterObject
refers to the current object in the collection.
In case when a map is used it will refer to the current Map.Entry
object which allows one to use filterObject.key
or filterObject.value
in the expresion.
You can also filter before the method call, using @PreFilter
, though this is a less common requirement.
The syntax is just the same, but if there is more than one argument which is a collection type then you have to select one by name using the filterTarget
property of this annotation.
Note that filtering is obviously not a substitute for tuning your data retrieval queries. If you are filtering large collections and removing many of the entries then this is likely to be inefficient.
Built-In Expressions
There are some built-in expressions which are specific to method security, which we have already seen in use above.
The filterTarget
and returnValue
values are simple enough, but the use of the hasPermission()
expression warrants a closer look.
The PermissionEvaluator interface
hasPermission()
expressions are delegated to an instance of PermissionEvaluator
.
It is intended to bridge between the expression system and Spring Security’s ACL system, allowing you to specify authorization constraints on domain objects, based on abstract permissions.
It has no explicit dependencies on the ACL module, so you could swap that out for an alternative implementation if required.
The interface has two methods:
boolean hasPermission(Authentication authentication, Object targetDomainObject,
Object permission);
boolean hasPermission(Authentication authentication, Serializable targetId,
String targetType, Object permission);
which map directly to the available versions of the expression, with the exception that the first argument (the Authentication
object) is not supplied.
The first is used in situations where the domain object, to which access is being controlled, is already loaded.
Then expression will return true if the current user has the given permission for that object.
The second version is used in cases where the object is not loaded, but its identifier is known.
An abstract "type" specifier for the domain object is also required, allowing the correct ACL permissions to be loaded.
This has traditionally been the Java class of the object, but does not have to be as long as it is consistent with how the permissions are loaded.
To use hasPermission()
expressions, you have to explicitly configure a PermissionEvaluator
in your application context.
This would look something like this:
<security:global-method-security pre-post-annotations="enabled">
<security:expression-handler ref="expressionHandler"/>
</security:global-method-security>
<bean id="expressionHandler" class=
"org.springframework.security.access.expression.method.DefaultMethodSecurityExpressionHandler">
<property name="permissionEvaluator" ref="myPermissionEvaluator"/>
</bean>
Where myPermissionEvaluator
is the bean which implements PermissionEvaluator
.
Usually this will be the implementation from the ACL module which is called AclPermissionEvaluator
.
See the Contacts sample application configuration for more details.
Method Security Meta Annotations
You can make use of meta annotations for method security to make your code more readable. This is especially convenient if you find that you are repeating the same complex expression throughout your code base. For example, consider the following:
@PreAuthorize("#contact.name == authentication.name")
Instead of repeating this everywhere, we can create a meta annotation that can be used instead.
-
Java
-
Kotlin
@Retention(RetentionPolicy.RUNTIME)
@PreAuthorize("#contact.name == authentication.name")
public @interface ContactPermission {}
@Retention(AnnotationRetention.RUNTIME)
@PreAuthorize("#contact.name == authentication.name")
annotation class ContactPermission
Meta annotations can be used for any of the Spring Security method security annotations. In order to remain compliant with the specification JSR-250 annotations do not support meta annotations.